The Propeller Boss Cap Fins (PBCF) is often used to ordinary propeller, a good energy-saving effect being obtained. In order to study the energy-saving mechanism of ducted propeller with PBCF, in this paper, the FLUENT has been taken to simulate the distribution of thrust coefficient, torque coefficient, blade pressure and velocity vector of hub surface at different advance coefficients. By contrasting the results of numerical simulation of hydrodynamic performance of ducted propeller between with fins and without fins, we know that at the low advance coefficient, the ducted propeller with fins will increase the thrust coefficient and decrease the torque coefficient; rising the open water propeller efficiency, improving the efficiency under the premise of the efficiency increase by duct. The existence of fins has changed velocity distribution of water around the hub and made the water that flowed around the propeller hub with propeller rotation direction flow to propeller tail along the fins not gather in the cub, so it weakened the hub vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.