Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks. Using the increased heating capabilities P NBI ≤ 3.8 MW H-mode at I p = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I p and more strongly with B t than in the ITER IPB98(y,2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original design value. The anomalous momentum diffusion, χ φ , is linked to the ion diffusion, χ i , with a Prandtl number close to P φ ≈ χ φ /χ i ≈ 1, although χ i approaches neoclassical values. New high spatially resolved measurements of the edge radial electric field, E r , show that the position of steepest gradients in electron pressure and E r are coincident, but their magnitudes are not linked. The T e pedestal width on MAST scales with the β pol rather than ρ pol . The ELM frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of 4 external coils (n = 1, 2). A new internal 12 coil set (n ≤ 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfvén eigenmodes (CAE). The damping rate of ellipticityinduced AE was measured to be 4% using the new internal coils as antennae. Fast particle instabilities also affect the off-axis NBI current drive and lead to fast ion diffusion of the order of 0.5 m 2 /s and reduce the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a spherical tokamak generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST. Introduction: MAST [1]is one of the two leading tight aspect ratio (A = ε −1 = R/a = 0.85 m/0.65 m ∼ 1.3, I p ≤ 1.5 MA) tokamaks in the world. The hot T ≤ 3 keV, dense n e = (0.1 − 1) × 10 20 m −3 and highly shaped (δ ≤ 0.5, 1.6 ≤ κ ≤ 2.5) plasmas are accessed at moderate toroidal field B t (R = 0.7 m) ≤ 0.62 T and show many similarities to conventional aspect ratio tokamaks. Detailed physics studies using the extensive array of state of the art diagnostics and access to different physics regimes help to consolidate the physics basis for ITER and DEMO [2,3], and explore the viability of future devices based on the spherical tokamak (ST) concept such as a component test facility (CTF) [4] or an advanced power plant [5]. The challenge for today's experiments is to find an integrated scenario that extrapolates to these future devices, in particular to develop plasmas with reduced power load on plasma facing components, notably from edge localised modes (ELM), but high confinement facilitated by internal or edge transport ba...
New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp up models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge detailed studies have revealed how filament characteristic are responsible for determining the near and far SOL density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during ELMs and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n>1 has been shown to be important for plasma performance.
Current ramp-up with reduced central solenoid (CS) flux consumption in JT-60SA has been investigated using an integrated modeling code suite (TOPICS) with a turbulent model (CDBM). The plasma current can be ramped-up from 0.6 MA to 2.1 MA with no additional CS flux consumption if the plasma current is overdriven by neutral-beam-driven and bootstrap current. A time duration required for the current ramp-up without CS flux consumption becomes as long as 150 s in the scenario we have examined. In order to achieve a current overdrive condition from 0.6 MA, the current drive by a lower energy neutral beam (85 keV) is effective. A higher energy neutral beam (500 keV) cannot be used in this early phase with a low central electron density (~2 × 10 19 m −3 ) due to large shine through loss, while it can be effectively used in the later phase. Therefore, the main current driver should be switched from the lower energy neutral beam to the higher energy neutral beam during the current ramp-up phase. As a result of an intensive auxiliary heating, plasma beta (the ratio of the plasma pressure to the magnetic pressure) becomes high. Ideal MHD instabilities of such high beta plasmas have been investigated using a linear ideal MHD stability analysis code (MARG2D). External kink modes which might affect the core plasma can be stabilized during the current ramp-up if there is a perfectly conducting wall at the location of the stabilizing plate and the vacuum vessel of JT-60SA and the plasma has a broader pressure profile with the H-mode pedestal and the internal transport barrier.
This paper presents an experimental demonstration to determine electron temperature (T(e)) with unknown spectral sensitivity (transmissivity) in a Thomson scattering system. In this method, a double-pass scattering configuration is used and the scattered lights from each pass (with different scattering angles) are measured separately. T(e) can be determined from the ratio of the signal intensities without knowing a real chromatic dependence in the sensitivity. Note that the wavelength range for each spectral channel must be known. This method was applied to the TST-2 Thomson scattering system. As a result, T(e) measured from the ratio (T(e,r)) and T(e) measured from a standard method (T(e,s)) showed a good agreement with <∣T(e,r) - T(e,s)∣∕T(e,s)> = 7.3%.
Abstract. Rf power at 30 MHz has been applied in a variety of situations to NSTX plasmas. The response of the plasma is observed in order to study both the physics of High Harmonic Fast Wave (HHFW) heating and as a tool to extend the performance of NSTX plasmas. In this paper we will discuss the progress made to date towards these goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.