Abstract. In the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages) have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary quadratic Poisson algebra with five generators. The superintegrability of the generalized Kepler-Coulomb potential that was investigated by Verrier and Evans (J. Math. Phys. 49 (2008), 022902, 8 pages) is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the nondegenerate case of systems with quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding to the quantum Verrier-Evans system is discussed. The subalgebras structure, the Casimir operators and the the finite-dimensional representation of this algebra are studied and the energy eigenvalues of the nondegenerate Kepler-Coulomb are calculated.
There are two classes of quantum integrable systems on a manifold with quadratic integrals, the Liouville and the Lie integrable systems as it happens in the classical case. The quantum Liouville quadratic integrable systems are defined on a Liouville manifold and the Schrödinger equation can be solved by separation of variables in one coordinate system. The Lie integrable systems are defined on a Lie manifold and are not generally separable ones but the can be solved. Therefore there are superintegrable systems with two quadratic integrals of motion not necessarily separable in two coordinate systems. The quantum analogues of the two dimensional superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems are classified as special cases of these six general classes. The coefficients of the associative algebra of the general cases are calculated. These coefficients are the same as the coefficients of the classical case multiplied by − 2 plus quantum corrections of order 4 and 6 .
In the three dimensional flat space any classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller [1] have proved that, in the case of non degenerate potentials, i.e potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary parafermionic-like quadratic Poisson algebra with five generators. The Kepler Coulomb potential that was introduced by Verrier and Evans [2] is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the non degenerate case of systems with quadratic integrals.
There are two classes of quantum integrable systems on a manifold with quadratic integrals, the Liouville and the Lie integrable systems as it happens in the classical case. The quantum Liouville quadratic integrable systems are defined on a Liouville manifold and the Schrödinger equation can be solved by separation of variables in one coordinate system. The Lie integrable systems are defined on a Lie manifold and are not generally separable ones but the can be solved. Therefore there are superintegrable systems with two quadratic integrals of motion not necessarily separable in two coordinate systems. The quantum analogues of the two dimensional superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems are classified as special cases of these six general classes. The coefficients of the associative algebra of the general cases are calculated. These coefficients are the same as the coefficients of the classical case multiplied by − 2 plus quantum corrections of order 4 and 6
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.