Abstract:The colour of carbon fibre fabric is black which limits its aesthetic properties. CO 2 laser has been used for cutting carbon fibres. The impact of CO 2 laser treatment to modify the surface of carbon fibre fabric is investigated in this work. Different combinations of laser process parameters, i.e., pixel time (110, 120, 130, 140, 150, 160, 170, 180, 190 and 200 µs, with 10 µs intervals) and resolution (70, 80, 90 and 100 dpi (dots per inch), with 10 dpi intervals), were used for treating carbon fibre fabric surface. Since the laser process is a surface treatment, contact angle measurement was used for evaluating the wetting property imparted after laser processing. The resistivity of the laser-treated carbon fibre fabric was measured to evaluate any effect on the original electrical property of the carbon fibre fabric. Moreover, surface morphology and functionality of laser-treated carbon fibre fabric were assessed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total internal reflectance (FTIR-ATR), respectively. SEM assessment was to examine the physical change in the carbon fibre surface after laser processing. On the other hand, the FTIR-ATR measurement can help to evaluate the chemical change in the carbon fibre surface after laser processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.