In this work, the potential of Bacillus subtilis strain M4 at protecting plants against fungal diseases was demonstrated in different pathosystems. We provide evidence for the role of secreted lipopeptides, and more particularly of fengycins, in the protective effect afforded by the strain against damping-off of bean seedlings caused by Pythium ultimum and against gray mold of apple in post-harvest disease. This role was demonstrated by the strong biocontrol activity of lipopeptide-enriched extracts and through the detection of inhibitory quantities of fengycins in infected tissues. Beside such a direct antagonism of the pathogen, we show that root pre-inoculation with M4 enabled the host plant to react more efficiently to subsequent pathogen infection on leaves. Fengycins could also be involved in this systemic resistance-eliciting effect of strain M4, as these molecules may induce the synthesis of plant phenolics involved in or derived from the defense-related phenylpropanoid metabolism. Much remains to be discovered about the mechanisms by which Bacillus spp suppress disease. Through this study on strain M4, we reinforce the interest in B. subtilis as a pathogen antagonist and plant defense-inducing agent. The secretion of cyclic fengycin-type lipopeptides may be tightly related to the expression of these two biocontrol traits.
Aim: Test of Bacillus subtilis strain GA1 for its potential to control grey mould disease of apple caused by Botrytis cinerea. Methods and Results: GA1 was first tested for its ability to antagonize in vitro the growth of a wide variety of plant pathogenic fungi responsible for diseases of economical importance. The potential of strain GA1 to reduce post-harvest infection caused by B. cinerea was tested on apples by treating artificially wounded fruits with endospore suspensions. Strain GA1 was very effective at reducing disease incidence during the first 5 days following pathogen inoculation and a 80% protection level was maintained over the next 10 days. Treatment of fruits with an extract of GA1 culture supernatant also exerted a strong preventive effect on the development of grey mould. Further analysis of this extract revealed that strain GA1 produces a wide variety of antifungal lipopeptide isomers from the iturin, fengycin and surfactin families. A strong evidence for the involvement of such compounds in disease reduction arose from the recovery of fengycins from protected fruit sites colonized by bacterial cells. Conclusions:The results presented here demonstrate that, despite unfavourable pH, B. subtilis endospores inoculated on apple pulp can readily germinate allowing significant cell populations to establish and efficient in vivo synthesis of lipopeptides which could be related to grey mould reduction. Significance and Impact of the Study: This work enables for the first time to correlate the strong protective effect of a particular B. subtilis strain against grey mould with in situ production of fengycins in infected sites of apple fruits.
An infant-controlled tactile habituation without visual control procedure was used to evaluate the ability of 32 late-preterm neonates (mean gestational age: 34 weeks) and 32 early-term neonates (mean gestational age: 38 weeks) to actively explore with hands objects varying in texture (smooth, granular). Holding time and Hand Pressure Frequency (HPF) were recorded. Holding time decreased as habituation progressed in both group of neonates. Holding time increased from habituation trials to test trials only in early-term neonates. A reaction to novelty was only observed in early-term neonates. During habituation, HPF remained unchanged in late-preterm infants whereas HPF decreased in early-term infants. HPF increased from habituation trials to test trials in early-term neonates and in late-preterm infants. However, reaction to novelty was only observed for early-term infants. The significance of these results is discussed in reference to brain maturation in preterm infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.