Ultrathin
bilayers (BLs) of bismuth have been predicated to be
a two-dimensional (2D) topological insulator. Here we report on a
new route to manufacture the high-quality Bi bilayers from a 3D topological
insulator, a top-down approach to prepare large-area and well-ordered
Bi(111) BL with deliberate hydrogen etching on epitaxial Bi2Se3 films. With scanning tunneling microscopy (STM) and
X-ray photoelectron spectra (XPS) in situ, we confirm
that the removal of Se from the top of a quintuple layer (QL) is the
key factor, leading to a uniform formation of Bi(111) BL in the van
der Waals gap between the first and second QL of Bi2Se3. The angle resolved photoemission spectroscopy (ARPES) in situ and complementary density functional theory (DFT)
calculations show a giant Rashba splitting with a coupling constant
of 4.5 eV Å in the Bi(111) BL on Bi2Se3. Moreover, the thickness of Bi BLs can be tuned by the amount of
hydrogen exposure. Our ARPES and DFT study indicated that the Bi hole-like
bands increase with increasing the Bi BL thickness. The selective
hydrogen etching is a promising route to produce a uniform ultrathin
2D topological insulator (TI) that is useful for fundamental investigations
and applications in spintronics and valleytronics.
We report a systematic study on the structural and electronic properties of Bi2Te3−xSex topological insulator alloy grown by molecular beam epitaxy (MBE). A mixing ratio of Bi2Se3 to Bi2Te3 was controlled by varying the Bi:Te:Se flux ratio. X-ray diffraction and Raman spectroscopy measurements indicate the high crystalline quality for the as-grown Bi2Te3−xSex films. Substitution of Te by Se is also revealed from both analyses. The surfaces of the films exhibit terrace-like quintuple layers and their size of the characteristic triangular terraces decreases monotonically with increasing Se content. However, the triangular terrace structure gradually recovers as the Se content further increases. Most importantly, the angle-resolved photoemission spectroscopy results provide evidence of single-Dirac-cone like surface states in which Bi2Te3−xSex with Se/Te-substitution leads to tunable surface states. Our results demonstrate that by fine-tuned MBE growth conditions, Bi2Te3−xSex thin film alloys with tunable topological surface states can be obtained, providing an excellent platform for exploring the novel device applications based on this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.