Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral recombination. Low SARS-CoV-2 mutation rates make detecting recombination difficult. Here, we develop and apply a novel phylogenomic method to exhaustively search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. We investigate a 1.6M sample tree, and identify 606 recombination events. Approximately 2.7% of sequenced SARS-CoV-2 genomes have recombinant ancestry. Recombination breakpoints occur disproportionately in the Spike protein region. Our method empowers comprehensive real time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.