The insertion of a chiral‐ligated metal carbene into an aliphatic C‐H bond to construct a carbon‐carbon bond imparts asymmetry into the resultant molecule to form enantiomerically enriched lactones, lactams, and cycloalkane derivatives and returns the chiral‐ligated metal to its catalytically active state. Insertion is favored by electron‐donating groups adjacent to the C‐H bond that undergoes insertion, and is disfavored by electron‐withdrawing groups. Chiral dirhodium(II) carboxamidates have proven to have the greatest breadth of high selectivities, but other classes of catalysts are selective in specific cases. Although there are examples of iodonium ylides as reactants, diazo compounds are the reactants of choice for these reactions. Diazocarbonyl compounds, especially diazoacetates and diazoacetamides, have reactivities and selectivities that are most suitable for high product yields and high stereoselectivities. This reaction is optimally designed for the formation of five‐membered ring compounds using diazoacetates and diazoacetamides and of four‐membered ring products with constrained diazoacetamides. Access to lignan lactones, baclofen, deoxyxylolactone, and rolipram, among others, exemplify the efficiencies of this methodology relative to other synthetic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.