A 9.5-kilobase plasmid of Yersinia pestis, the causative agent of plague, is required for high virulence when mice are inoculated with the bacterium by subcutaneous injection. Inactivation of the plasmid gene pla, which encodes a surface protease, increased the median lethal dose of the bacteria for mice by a millionfold. Moreover, cloned pla was sufficient to restore segregants lacking the entire pla-bearing plasmid to full virulence. Both pla+ strains injected subcutaneously and pla- mutants injected intravenously reached high titers in liver and spleen of infected mice, whereas pla- mutants injected subcutaneously failed to do so even though they establish a sustained local infection at the injection site. More inflammatory cells accumulated in lesions caused by the pla- mutants than in lesions produced by the pla+ parent. The Pla protease was shown to be a plasminogen activator with unusual kinetic properties. It can also cleave complement C3 at a specific site.
A comprehensive study of changes in messenger RNA (mRNA) levels in human neutrophils following exposure to bacteria is described. Within 2 hours there are dramatic changes in the levels of several hundred mRNAs including those for a variety of cytokines, receptors, apoptosisregulating products, and membrane traf-
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate protein output from the majority of human mRNAs. In contrast to the consensus view that all miRNAs are associated with Argonaute (Ago) proteins, we determine that miRNAs are expressed in a 13-fold excess relative to Agos in HeLa cells and that miRNAs are bound to mRNAs in a sevenfold excess relative to Agos, implying the existence of miRNA-mRNA duplexes not stoichiometrically bound by Agos. We show that all four human Agos can repress miRNA-mRNA duplexes, but only Ago2 can cleave small interfering RNA-mRNA duplexes in vitro. We visualize direct Ago binding to miRNA-mRNA duplexes in live cells using fluorescence lifetime imaging microscopy. In contrast to the consensus view that Agos bind miRNA duplexes, these data demonstrate that Agos can bind and repress miRNA-mRNA duplexes and support a model of catalytic Ago function in translational repression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.