The article discusses the strength of concrete and other brittle materials in the case of nonuniform biaxial type of compression (σ1 > σ2 > 0) and triaxial compression of σ1 > σ2 = σ3 > 0 type (it was assumed that σ> 0 corresponds to compression). It is noted that, when considering the biaxial loading in the accepted model, probabilistic nature of distribution of stresses along the contour of pores and inclusions, i.e. stress causing formation and propagation of cracks in the material, plays an important role. Moreover, the stress across the circuit pores was regarded as a three-dimensional random field of S (α,β,γ,ω),where ω -is a random argument. Considering the average number of overshoots NR we believed that the random field of S is not homogeneous (not stationary): its expectation is not constant, but is a function of nonrandom arguments Мs = Мs(α;β;γ). External load, corresponding to NR = const (and at the same time constant of level exceedance probability), first increases and then decreases a little. Heating up to 300 о С (573K) and 400 о С (673K) leads to violations, and long-term load leads to significant changes in the macro-and microstructure of concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.