Predatory mites play the leading role in commercial augmentative biological control. They are mainly used in protected vegetable and ornamental cultivation systems to control phytophagous mites, thrips and whiteflies. Use in open-field systems and in animal husbandry is still limited. Phytoseiidae species are by far the most important group of commercially available mite biocontrol agents with about 20 species offered worldwide. Out of these, Amblyseius swirskii, Phytoseiulus persimilis, Neoseiulus cucumeris and Neoseiulus californicus are the most important ones, covering together about two thirds of the entire arthropod biocontrol agent market. The widespread use of these leaf-inhabiting predatory mites has stimulated research into their biology and we now have substantial knowledge on, for instance, the interaction between different predatory mite species, that helps to improve biocontrol programmes. Soil predatory mites, for example Stratiolaelaps scimitus (Laelapidae) or Macrocheles robustulus (Macrochelidae) for the control of sciarid fly larvae and thrips pupae are much less frequently used and also much less researched. This makes further development of biocontrol strategies using these mites more difficult. Currently, there appears to be no reliable method to quantify the abundance of these mites in soil samples. In studies at our laboratory, the frequently used Berlese-Tullgren funnels gave very variable results. We observed that soil predatory mites can even multiply during the extraction process. In addition to the control of plant pests, predatory mites can also be used to control parasites of animals like the poultry red mite, Dermanyssus gallinae. Good results have been obtained applying a combination of the predatory mites Androlaelaps casalis (Laelapidae) and Cheyletus eruditus (Cheyletidae) in laying hen stables. This paper provides an overview on the current status of commercial biological control using predatory mites and identifies research needs to make the currently available mite biocontrol agents even more successful and extend biological control with mites to other areas.
Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for predators are normally supplied on the crop plants; using the litter-inhabiting food web as a source of alternative food for plant-inhabiting predators has received less attention. We investigated the effect of supplying plant-inhabiting predatory mites with alternative prey (astigmatic mites) in the litter on pest control. Predator (Amblyseius swirskii) movement and population dynamics of the pest (western flower thrips) and predators were studied on rose plants in greenhouses. Predators commuted between the aboveground plant parts where they controlled thrips, and the litter, where they fed on alternative prey, although the latter were a superior diet. Predators controlled thrips better in the presence of the astigmatic mites than in their absence. We show that predatory mites can form a link between aboveground pests and the litter food web, and propose that adding alternative prey to the litter of ornamental greenhouses can result in higher predator densities and increased biological control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.