The paper presents a novel deep learning approach, which extracts latent information from trained Deep Neural Networks (DNNs) and derives concise representations that are analyzed in an effective, transparent way for prediction in medical imaging. A novel methodology is presented, in which deep neural architectures that have been trained to provide highly accurate predictions over existing datasets are adapted, in a consistent way, to make predictions over different contexts and datasets. Unified prediction is then achieved over the original and the new datasets. Successful application is illustrated through a large experimental study for prediction of Parkinson's disease from MRI and DaTScans, as well as for prediction of COVID-19 from CT scans and X-rays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.