Molybdenum-based cocatalyst being used to construct heterojunctions for efficient photocatalytic H2 production is a promising research hotspot. In this work, CdIn2S4 was successfully closely supported on bulk Mo2C via the hydrothermal method. Based on their matching band structures, they formed a Type Ⅰ heterojunction after the combination of Mo2C (1.1 eV, −0.27 V, 0.83 V) and CdIn2S4 (2.3 eV, −0.74 V, 1.56 V). A series of characterizations proved that the heterojunction composite had higher charge separation efficiency compared to a single compound. Meanwhile, Mo2C in heterojunction could act as an active site for hydrogen production. The photocatalytic H2 production activity of the heterojunction composites was significantly improved, and the maximum activity was up to 1178.32 μmmol h−1 g−1 for 5Mo2C/CdIn2S4 composites. 5Mo2C/CdIn2S4 heterojunction composites possess excellent durability in three cycles (loss of 6%). Additionally, the mechanism of increased activity for composites was also investigated. This study provides a guide to designing noble-metal-free photocatalyst for highly efficient photocatalytic H2 evolution.
The powder of hematite sample was isothermally reduced with hydrogen-water vapor gas mixture at 1023K-1273K. The results indicated that the overall reduction process of hematite could be separated into three stages (Fe2O3-Fe3O4-FeO-Fe) to respectively study. At 1023K, the average reaction rate dropped by 53.6% in the stage 1 when the water vapor content of gas reactant rose from 0% to 50%, and it decreased by about 77.2% in the stage 2. However, in the stage 3, when the water vapor content only increased from 0% to 20%, it decreased by about 78.1%. Besides, the average reaction rate had a roughly negative linear relationship with the water vapor content, and the results further shown that the effect of water vapor on the reduction reaction increased with increasing reaction temperature at all stages of the reduction reaction. The microstructure of reduction products showed that it still had some holes, which the channel for hydrogen diffusion was not seriously blocked. In order to further clarify the influence of water vapor in the reduction stage, different models were considered, and the range of apparent activation energy of different stages obtained by model fitting was about 20-70 kJ/mol, which also confirmed the absence of solid-state diffusion phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.