A fuel performance analysis code for a very high temperature gas-cooled reactor (VHTR) COPA (Coated Particle) is being developed at the Korea Atomic Energy Research Institute (KAERI). The COPA code consists of nine modules: BURN, TEMTR, TEMPEB, TEMBL, MECH, FAIL, FPREL, ABAQ, and MPRO. The BURN determines neutron flux and fluence at a location of a reactor core, and then calculates a fuel burnup, a fission rate per volume and a fission product inventory throughout a fuel particle and a fuel element. The TEMTR, TEMPEB and TEMBL calculate the temperature distributions in a coated fuel particle, a pebble and a fuel block by using a one-dimensional finite difference method, respectively. The MECH performs mechanical calculations on a coated fuel particle by using a finite element method. The FAIL performs probabilistic calculations to estimate the failure probabilities of the coating layers during an experiment or a reactor operation. The FPREL estimates the migrations of gaseous and metallic fission products through a fuel particle and a fuel element by using a one-dimensional finite difference method. The ABAQ performs the analysis of the crack and debonding in a coated fuel particle. The MPRO calculates the material properties of the kernel, low-density pyrocarbon, high-density pyrocarbon, silicon carbide, matrix graphite, and structural graphite. Each module is used to produce input data for other modules or is inserted into other modules. The COPA code is one of the computer codes taking part in the IAEA-CRP-6 benchmarking program. The stresses and failure fractions calculated by the COPA-MECH and COPA-FAIL showed good agreements with the results by the other countries’ codes. In order to establish a good database of the related material properties, KAERI is participating in an international irradiation experiment, is planning its own irradiation and post-irradiation experiments, and will perform ab-initio calculations on the fuel materials.
We have developed a silver-mirror-based multipass preamplifier for a broadband amplification in a terawatt Ti:sapphire laser. With the extremely broad bandwidth of the silver mirrors, a very broad amplified spectrum can be generated at an amplified energy of 4 mJ; the amplified spectral width is 65 nm at half maximum and 160 nm at -25 dB without any spectral shaping technique. Such a broad amplification can be explained well by the simulation that includes gain narrowing and gain saturation. Even after a further amplification to an energy of 600 mJ, the amplified spectrum is broad enough to support an approximately 20 fs transform-limited pulse duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.