Highly (111)-oriented (Pb0.76Ca0.24)TiO3 (PCT) thin films were grown on Pt/Ti/SiO2/Si substrates by a sol–gel process. The Au/PCT/Pt metal–insulator–metal film capacitor showed well-saturated hysteresis loops at an applied field of 800 kV/cm with remanent polarization (Pr) and coercive electric field (Ec) values of 18.2 μC/cm2 and 210 kV/cm, respectively. The leakage current depended on the voltage polarity. At low electrical field and with Pt electrode biased negatively, the Pt/PCT interface exhibits a Schottky emission characteristics. The Au/PCT interface forms an ohmic contact. The conduction current when the Au electrode is biased negatively shows a space-charge-limited behavior. The dielectric relaxation current behavior of Au/PCT/Pt capacitor obeys the well-known Curie–von Schweidler law at low electric field. At higher fields, the currents have contributions to both dielectric relaxation current and leakage current.
We have developed an effusive laser photodissociation radical source, aiming for the production of vibrationally relaxed radicals. Employing this radical source, we have measured the vacuum ultraviolet (VUV) photoionization efficiency (PIE) spectrum of the propargyl radical (C(3)H(3)) formed by the 193 nm excimer laser photodissociation of propargyl chloride in the energy range of 8.5-9.9 eV using high-resolution (energy bandwidth = 1 meV) multibunch synchrotron radiation. The VUV-PIE spectrum of C(3)H(3) thus obtained is found to exhibit pronounced autoionization features, which are tentatively assigned as members of two vibrational progressions of C(3)H(3) in excited autoionizing Rydberg states. The ionization energy (IE = 8.674 +/- 0.001 eV) of C(3)H(3) determined by a small steplike feature resolved at the photoionization onset of the VUV-PIE spectrum is in excellent agreement with the IE value reported in a previous pulsed field ionization-photoelectron study. We have also calculated the Franck-Condon factors (FCFs) for the photoionization transitions C(3)H(3) (+)(X;nu(i),i = 1-12)<--C(3)H(3)(X). The comparison between the pattern of FCFs and the autoionization peaks resolved in the VUV-PIE spectrum of C(3)H(3) points to the conclusion that the resonance-enhanced autoionization mechanism is most likely responsible for the observation of pronounced autoionization features. We also present here the VUV-PIE spectra for the mass 39 ions observed in the VUV synchrotron-based photoionization mass spectrometric sampling of several premixed flames. The excellent agreement of the IE value and the pattern of autoionizing features of the VUV-PIE spectra observed in the photodissociation and flames studies has provided an unambiguous identification of the propargyl radical as an important intermediate in the premixed combustion flames. The discrepancy found between the PIE spectra obtained in flames and photodissociation at energies above the IE(C(3)H(3)) suggests that the PIE spectra obtained in flames might have contributions from the photoionization of vibrationally excited C(3)H(3) and/or the dissociative photoionization processes involving larger hydrocarbon species formed in flames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.