ABSTRACT. Bolting and flowering are key processes during the growth and development of Chinese cabbage (Brassica rapa L. ssp pekinensis). Understanding the molecular mechanisms underlying bolting and flowering is of significance for improving production of the vegetable. A leaf-color change from bright green to gray-green has been observed following differentiation of the flowering stem and before bolting in the vegetable, and is considered to be a signal for bolting. Proteomics in meristem tissues of an inbred line (C30) were analyzed by two-dimensional electrophoresis during the transition period. We found that some proteins were specifically expressed while others were differentially expressed. Among these, 17 proteins were specifically expressed before the color change, 18 were specifically expressed after the color change, 21 were downregulated during the color change, and 29 were upregulated. Mass spectrometric analysis (MALDI-TOF-TOF/MS) was used to analyze 17 protein spots, and four proteins (subunit E1 of vacuolar-type H + transporter ATPase, the large subunit of Rubicon, S-adenosylmethionine synthetase, and tubulin α-2) were identified. qPCR analysis was conducted to quantify the expression of genes encoding these proteins during the transitional period. The expression of BrVHA-E1, BrSAMS, BrrbcL, and BrTUA6 was significantly different before and after the leaf-color change, suggesting that these genes might be involved in regulating flower differentiation and bolting.
Reed canary grass (RCG) is a perennial grass traditionally cultivated for forage. It is also used as fuel to produce energy in Finland and Sweden, and other countries have expressed interest in the cultivation of RCG. In China, arable land is limited. Salinity is considered to be a major factor limiting plant crop development and productivity. To boost biofuel production of RCG and extend its range in saline soil, we seek to improve its salt tolerance. Proline acts as an osmolyte that accumulates when plants are subjected to abiotic stress. P5CS plays a crucial role in proline biosynthesis. We isolated a P5CS gene from RCG, designated B231P5CS (GenBank accession No. JQ622685). B231P5CS is a fragment (971 bp) that encodes a 323-amino acid polypeptide. We also cloned an actin gene fragment from RCG as a reference gene in expression analysis of B231P5CS gene. Expression analysis revealed that B231P5CS transcripts were upregulated in leaves after treatment with salt (200 mM NaCl) and that transcript levels of B231P5CS reached a maximum 12 h after exposure, which was 14.69 Isolation and expression analysis of the P5CS gene from RCG times the level in control plants. The trends of expression were exactly opposite in roots; transcripts were downregulated after salt treatment. Proline concentration increased in leaves after stress. In contrast, proline content of roots decreased up to 3.6-fold relative to controls. Changes in proline concentration after stress were correlated with B231P5CS expression. Our results suggest that B231P5CS is a stress-inducible gene and plays a non-redundant role in plant development. This gene may be used to improve stress tolerance of RGC and other bioenergy feedstock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.