An efficient indirect method is presented to determine fuel-optimal many-revolution low-thrust transfers in presence of Earth-shadow eclipses. Specifically, the events of shadow entrance and exit are modelled as interior-point constraints. Following the observation that an ill-conditioned state transition matrix may occur when the spacecraft flies over the edge of the shadow, a two-level continuation scheme is introduced to generate many-revolution trajectories. The established computational framework integrates analytic derivatives, switching detection and continuation with an augmented flowchart, which yields discontinuous bang-bang solutions and their gradients. Transfers from a geostationary transfer orbit to a geostationary orbit are simulated to illustrate the effectiveness and efficiency of the method developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.