We studied via computer simulation the effects of electrode diameter, electrode length, interelectrode spacing, and tissue size on the accuracy of measured tissue resistivities and anisotropy ratios obtained with the widely used four-electrode technique. Such measurements commonly assume an ideal situation in which the four electrodes are infinitesimally small and the tissue is semi-infinite. Our study shows that these geometric factors can significantly affect measured resistivities, particularly for anisotropic tissues. The measured anisotropy ratio is decreased by either 1) increasing the electrode diameter or length relative to the interelectrode spacing of the probe or 2) decreasing tissue size. We have provided an equation for estimating errors in the measured anisotropy ratio from the parameters of electrode and tissue geometries. The simulation findings are supported by our in vitro experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.