Nanofluid has been attracted great attention since it was proposed as a preeminent working fluid. Flow boiling is familiar in heat transfer system and the critical heat flux is a key parameter for the design of thermal hydraulic. In present work, the critical heat flux of nanofluid flow boiling is experimentally investigated in a vertical tube with the consideration of outlet pressure, mass flux, inlet subcooling, heating length and diameter. The results indicate that the critical heat flux of nanofluid flow boiling is enhanced compared with base fluid and the increasing radio is increased with increasing the mass flux, diameter and pressure, and with decreasing the heating length. In addition, the inlet subcooling and concentrations (0.1vol.%, 0.5vol.%) have almost no significant influence. Furthermore, a new mechanism for the enhancement of nanofluid flow boiling critical heat flux was proposed by the SEM images of nanopariticle deposition on the heating surface.
After the severe accident inside a nuclear reactor, the IVR (In-vessel retention) management strategy is an effective way to keep the integrity of pressure vessel and reduce risk of radioactive leakage by holding the damaged core materials through External Reactor Vessel Cooling (ERVS). The damaged core materials aggregate in the lower head of pressure vessel and releasing heat to the lower head. Therefore, it is very important to remove heat timely to keep the integrity of pressure vessel by ERVS. The shape of lower head is hemispherical and the local Critical Heat Flux (CHF) of different parts changed with latitude. In this paper, influence of orientation angles, area and length-width ratio on CHF of plate heating surface for saturated pool boiling is investigate experimentally. The results show that CHF increases with increasing orientation angles and decreasing area, meanwhile, length-width ratio has a significantly effect on CHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.