We have developed a new DH mapping population for oilseed rape, named TNDH, using genetically and phenotypically diverse parental lines. We used the population in the construction of a high stringency genetic linkage map, consisting of 277 loci, for use in quantitative genetic analysis. A proportion of the markers had been used previously in the construction of linkage maps for Brassica species, thus permitting the alignment of maps. The map includes 68 newly developed Sequence Tagged Site (STS) markers targeted to the homologues of defined genes of A. thaliana. The use of these markers permits the alignment of our linkage map with the A. thaliana genome sequence. An additional 74 loci (31 newly developed STS markers and 43 loci defined by SSR and RFLP markers that had previously been used in published linkage maps) were added to the map. These markers increased the resolution of alignment of the newly constructed linkage map with existing Brassica linkage maps and the A. thaliana genome sequence. We conducted field trials with the TNDH population at two sites, and over 2 years, and identified reproducible QTL for seed oil content and erucic acid content. The results provide new insights into the genetic control of seed oil and erucic acid content in oilseed rape, and demonstrate the utility of the linkage map and population.
We report the deposition of hexagonal boron nitride (h-BN) on graphene by ion beam sputtering deposition. Both graphene domains and films synthesized by chemical vapor deposition were used as substrates. In the case of graphene domains, it was found that the h-BN domains were preferentially grown on the baked Cu surface instead of graphene due to the highly catalytic activity of Cu. On the other hand, the higher ejection energy of sputtered particles leads to the mixing of boron/nitrogen atoms and carbon atoms. Consequently, the h-BNC films consisting of the hybrid atomic layers of h-BN and graphene domains were formed when the graphene films were used as substrates. This work provides a promising and accessible route for the synthesis of hybridized h-BNC material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.