Self-organized AlGaN nanowires by molecular beam epitaxy have attracted significant attention for deep ultraviolet optoelectronics. However, due to the strong compositional modulations under conventional nitrogen rich growth conditions, emission wavelengths less than 250 nm have remained inaccessible. Here we show that Al-rich AlGaN nanowires with much improved compositional uniformity can be achieved in a new growth paradigm, wherein a precise control on the optical bandgap of ternary AlGaN nanowires can be achieved by varying the substrate temperature. AlGaN nanowire LEDs, with emission wavelengths spanning from 236 to 280 nm, are also demonstrated.
We report AlGaN nanowire light emitting diodes (LEDs) operating in the ultraviolet-C band. The LED structures are grown by molecular beam epitaxy on Si substrate. It is found that with the use of the n+-GaN/Al/p+-AlGaN tunnel junction (TJ), the device resistance is reduced by one order of magnitude, and the light output power is increased by two orders of magnitude, compared to AlGaN nanowire LEDs without TJ. For unpackaged TJ ultraviolet LEDs emitting at 242 nm, a maximum output power of 0.37 mW is measured, with a peak external quantum efficiency up to 0.012%.
This paper describes an integrated CMOS-MEMS inertial sensor microsystem, consisting of a 3-axis accelerometer sensor device and its complementary readout circuit, which is designed to operate over a wide temperature range from -55 o C to 175 o C. The accelerometer device is based on capacitive transduction and is fabricated using PolyMUMPS, which is a commercial process available from MEMSCAP. The fabricated accelerometer device is then post-processed by depositing a layer of amorphous silicon carbide to form a composite sensor structure to improve its performance over an extended wide temperature range. We designed and fabricated a CMOS readout circuit in IBM 0.13µm process that interfaces with the accelerometer device to serve as a capacitance to voltage converter. The accelerometer device is designed to operate over a measurement range of ±20g. The described sensor system allows low power, low cost and mass-producible implementation well suited for a variety of applications with harsh or wide temperature operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.