The programmed cell death 5 (PDCD5) protein plays an important apoptosis-accelerating role in cells undergoing apoptosis. Decreased expression of PDCD5 has been detected in various human carcinomas. Here we describe that one potent short interfering RNA (siRNA) against the PDCD5 (siPDCD5) specifically inhibits the expression of PDCD5 at both the mRNA and protein level. Cells with decreased PDCD5 expression displayed reduced sensitivity to an apoptotic stimulus induced by Bax overexpression in HeLa, HEK293 and 293T cell lines. Furthermore, we also show that siPDCD5 inhibited both caspase-3 activity and procaspase-3 cleavage. Suppressed expression of PDCD5 attenuates the release of cytochrome c from mitochondria to cytosol induced by Bax overexpression. This phenomenon is accompanied by the reduced translocation of Bax from the cytosol to mitochondria. MTT assay shows that targeted suppression of PDCD5 expression markedly promoted cell proliferation in Hela and HEK293 cell lines. Our data suggests that PDCD5 may exert its effects through pathway of mitochondria by modulating Bax translocation, cytochrome c release and caspase 3 activation directly or indirectly, and that decreased PDCD5 expression may be one of the mechanisms by which tumor cells achieve resistance to apoptotic stimulus induced by anticancer drugs.
Periodontitis is a bacteria-driven inflammatory destructive disease that leads to attachment loss, bone resorption, and even tooth loss. Accumulating studies revealed that macrophages might play an nonnegligible role during the processes of periodontitis. However, the underlying mechanism remains largely unknown. In this study, we found novel Akt2/JNK1/2/c-Jun and Akt2/miR-155-5p/DET1/c-Jun signaling pathways that regulated the polarization of macrophages and altered periodontal inflammatory status. Through hematoxylin and eosin, immunostaining, and immunofluorescence staining of clinical specimens, a higher number of M1 phenotype macrophage infiltration was found in periodontitis than in normal controls. Flow cytometry and immunofluorescence showed that overexpression of Akt2 in RAW 264.7 cells induced M1 macrophage polarization and decreased M2 polarization, while knockdown of Akt2 exerted an opposite effect. Furthermore, overexpression of Akt2 activated the JNK pathway and then increased the release of proinflammatory mediators, while knockdown of Akt2 downregulated the above genes accordingly. Importantly, the macrophage polarization and the subsequent alteration of pathway molecules induced by overexpression of Akt2 could be rescued by Akt2 and JNK inhibitors. Moreover, JNK inhibition could facilitate M2 polarization of macrophages. In a mouse periodontitis model, the novel signaling pathway as well as clinical phenotype was further verified. Inhibition of Akt2 facilitated macrophage M2 polarization and rescued the bone loss due to periodontitis. Collectively, we identified novel Akt2/JNK1/2/c-Jun and Akt2/miR-155-5p/DET1/c-Jun signaling pathways that regulate macrophage polarization and highlight that Akt2 inhibition promotes M2 polarization of macrophages and can be a novel potential candidate in the treatment of periodontitis.
Vanilloid receptor-1 (VR1) was originally found in the nervous system. Recent evidence indicates that VR1 is also expressed in various cell types. We hypothesized that VR1 exists in the human submandibular gland (SMG) and is involved in regulating salivary secretion. VR1 mRNA and protein were expressed in human SMGs and a human salivary intercalated duct cell line. VR1 was mainly located in serous acinar and ductal cells, but not in mucous acinar cells. Capsaicin, an agonist of VR1, increased intracellular free calcium, enhanced phosphorylation of extracellular signal-regulated kinase, and induced the trafficking of aquaporin 5 (AQP5) from the cytoplasm to the plasma membrane. These effects were abolished by pre-treatment with the VR1 antagonist capsazepine. Furthermore, capsaicin cream applied to the skin covering the submandibular area increased salivary secretion. These findings indicated that a functional VR1 is expressed in the human SMG and is involved in regulating salivary secretion by mediating AQP5 trafficking.
By introducing the difference permittivity ratio η = ( 2 − 0 )/( 1 − 0 ), the Green matrix method for computing surface plasmon resonances is extended to binary nanostructures. Based on the near field coupling, the interplay of plasmon resonances in two closely packed nanostrips is investigated. At a fixed wavelength, with varying η the resonances exhibit different regions: the dielectric effect region, resonance chaos region, collective resonance region, resonance flat region, and new branches region. Simultaneously, avoiding crossing and mode transfer phenomena between the resonance branches are observed. These findings will be helpful to design hybrid plasmonic subwavelength structures.PACS 73.20.Mf · 78.67.-n · 78.68.+m
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.