The probability of suffering the mood disorder depression is up to 30% in women and 15% in men during their life span. Pharmacological options for depression are limited: conventional antidepressants have low efficacy and a delayed onset of action (several weeks). Here we investigate the antidepressant actions of inhibitors of monoacylglycerol lipase (MAGL), the major degradative enzyme of the endocannabinoid 2-arachidonoylglycerol. A low-dose of MAGL inhibitors produces antidepressant effects on acute stress-exposed mice, through glutamatergic synaptic long-term depression (LTD), without significant effects on chronic corticosterone-exposed mice. In contrast, a high-dose of MAGL inhibitors produces pro- or antidepressant effects on acute stress- or chronic corticosterone-exposed mice, respectively, through GABAergic synaptic disinhibition. In the hippocampus, in vivo inhibition of MAGL induces a CB1 cannabinoid receptor (CB1R)-dependent suppression of inhibitory GABAergic synapses and an in vivo LTD of excitatory glutamatergic synapses. LTD induction requires CB1R in astroglial cells (but not in GABAergic or glutamatergic neurons) and postsynaptic glutamate receptors. The conventional antidepressant fluoxetine produces rapid or delayed antidepressant effects in acute stress- or chronic corticosterone-exposed mice, respectively. We propose that depression-like behavior of animals in response to acute stress is the normal behavioral response, and thus, MAGL inhibitors, which produce antidepressant effects in chronic corticosterone-exposed animals through GABAergic synaptic disinhibition, represent a new class of rapidly-acting and long-lasting antidepressants.
The Notch signaling pathway plays an important role in the bone metastasis microenvironment. Although recent evidence suggests that Notch signaling contributes to bone metastasis in breast and prostate cancer, its role and possible mechanisms in non-small cell lung cancer (NSCLC) bone metastasis are not yet clear. Here, we show that Notch3 is overexpressed in NSCLC bone metastases. The inhibition of Notch3 by small interfering RNA transfection decreased the invasion ability of NSCLC cells and transforming growth factor (TGF)-induced interleukin (IL)-6 and parathyroid hormone-related protein (pTHrP) expression in vitro. We also observed that Notch3 induced a strong morphological transformation, promoting the epithelial-mesenchymal transition (EMT). Western blotting and real-time polymerase chain reaction assays revealed that the forced overexpression of Notch3 induced the expression and activity of ZEB-1 and subsequent suppression of E-cadherin and upregulation of fibronectin, contributing to EMT and invasion. Western blotting and immunofluorescence assays showed that RNA interference-mediated ZEB-1 suppression blocked Notch-induced EMT-like transformation and subsequently reversed the observed effects on E-cadherin and downregulated fibronectin. A luciferase reporter system showed that Notch-induced ZEB-1 requires a functional binding site in the ZEB-1 promoter. In vitro invasion assays showed that the inhibition of ZEB-1 can decrease Notch3-promoted invasion and the expression of pTHrP and IL-6. Our results demonstrated that Notch upregulates ZEB-1, which contributes to TGF-β-induced EMT-like transformation and bone metastasis in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.