The erosion of enamel was observed in acidic bleaching solutions and resulted in a slight whitening effect. However, the neutral or alkaline bleaching agent shows a more obvious whitening effect, without the evidence of enamel erosion. SUMMARYThis study investigated the influence of pH values of bleaching agents on the properties of the enamel surface. Sixty freshly extracted premolars were embedded in epoxy resin and mesiodistally sectioned through the buccal aspect into two parts. The sectioned slabs were distributed among six groups (n¼10) and treated using different solutions. Group HCl was treated with HCl solution (pH¼3.0) and served as a positive control. Group DW, stored in distilled water (pH¼7.0), served as a negative control. Four treatment groups were treated using 30% hydrogen peroxide solutions with different pH values: group HP3 (pH¼3.0), group HP5 (pH¼5.0), group HP7 (pH¼7.0), and group HP8 (pH¼8.0). The buccal slabs were subjected to spectrophotometric evaluations. Scanning electron microscopy investigation and MicroRaman spectroscopy were used to evaluate enamel surface morphological and chemical composition alterations. pH value has a significant influence on the color changes after bleaching (p,0.001). Tukey's multiple comparisons revealed that the order of color changes was HP8, HP7.HP5, HP3.HCl.DW. No obvious morphological alterations were detected on the enamel surface in groups DW, HP7, and HP8. The enamel surface of groups HCl and HP3 showed significant alterations with an erosion appearance. No obvious chemical composition changes were detected with respect to Micro-Raman analysis. Within the limitations of this study, it was concluded that no obvious
This study evaluated the effects of two in-office bleaching agents (Beyond and Opalescence Boost) with different pH on the structure and mechanical properties of human enamel in vitro and in situ. One hundred and eight enamel slabs were obtained from freshly extracted premolars. The specimens were randomly distributed into nine groups (n=12), and the human saliva (HS) in the volunteers' oral cavities was used to simulate the in situ condition: Beyond + HS, Opalescence Boost (O-Boost) + HS, Control + HS, Beyond + artificial saliva (AS), O-Boost + AS, Control + AS, Beyond + distilled water (DW), O-Boost + DW, and Control + DW. The bleaching treatments were performed on the first and eighth day, and the total bleaching time was 90 minutes. Baseline and final surface roughness (RMS), surface morphology, microhardness, and fracture toughness (FT) were measured before the treatment and on the fifteenth day, respectively. Compared with control groups, surface alterations on enamel were found in the Beyond + AS and Beyond + DW groups under atomic force microscopy evaluation. Two-way analysis of variance and Tukey test revealed that the RMS showed significant intergroup differences for both storage condition and bleaching agent, whereas microhardness and FT revealed no significant alteration. The results indicated that in-office bleaching agents with low pH values could induce enamel morphology alterations under in vitro conditions. The presence of natural HS could eliminate the demineralization effect caused by low pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.