Seedlings of wild-type and etiolate mutant plants of Anthurium andraeanum cultivar 'Sonate' were treated for 15 d with different light intensities (20, 100, and 400 µmol·m·s) to analyze leaf plastid development and pigment content. Significant changes appeared in treated seedlings, including in leaf color, plastid ultrastructure, chloroplast development gene AaGLK expression, chlorophyll and anthocyanin contents, and protoplast shape. Wild-type and etiolated plants exhibited different plastid structures under the same light condition. The results suggest that light intensity is a crucial environmental factor influencing plastid development and leaf color formation in the A. andraeanum cultivar 'Sonate'.
Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional fruit tree with a long history. Multiple pistils (MP) lead to the formation of multiple fruits, decreasing fruit quality and yield. In this study, the morphology of flowers was observed at four stages of pistil development: undifferentiated stage (S1), pre-differentiation stage (S2), differentiation stage (S3), and late differentiation stage (S4). In S2 and S3, the expression of PmWUSCHEL (PmWUS) in the MP cultivar was significantly higher than that in the single pistil (SP) cultivar, and the gene expression of its inhibitor, PmAGAMOUS (PmAG), also showed the same trend, indicating that other regulators participate in the regulation of PmWUS during this period. ChIP-qPCR showed that PmAG could bind to the promoter and the locus of PmWUS, and H3K27me3 repressive marks were also detected at these sites. The SP cultivar exhibited an elevated level of DNA methylation in the promoter region of PmWUS, which partially overlapped with the region of histone methylation. This suggests that the regulation of PmWUS involves both transcription factors and epigenetic modifications. Also, the gene expression of Japanese apricot LIKE HETEROCHROMATIN PROTEIN (PmLHP1), an epigenetic regulator, in MP was significantly lower than that in SP in S2-3, contrary to the trend in expression of PmWUS. Our results showed that PmAG recruited sufficient PmLHP1 to maintain the level of H3K27me3 on PmWUS during the S2 of pistil development. This recruitment of PmLHP1 by PmAG inhibits the expression of PmWUS at the precise time, leading to the formation of one normal pistil primordium.
Filamentous plant pathogen genomes often display a bipartite architecture with gene sparse, repeat-rich compartments serving as a cradle for adaptive evolution. However, the extent to which this “two-speed” genome architecture is associated with genome-wide epigenetic modifications is unknown. Here, we show that the oomycete plant pathogens Phytophthora infestans and Phytophthora sojae possess functional adenine N6- methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine (5mC) could not be detected in the two Phytophthora species. Methylated DNA IP Sequencing (MeDIP-seq) of each species revealed that 6mA is depleted around the transcriptional starting sites (TSS) and is associated with low expressed genes, particularly transposable elements. Remarkably, genes occupying the gene-sparse regions have higher levels of 6mA compared to the remainder of both genomes, possibly implicating the methylome in adaptive evolution of Phytophthora. Among three putative adenine methyltransferases, DAMT1 and DAMT3 displayed robust enzymatic activities. Surprisingly, single knockouts of each of the 6mA methyltransferases in P. sojae significantly reduced in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the damt3 mutant revealed uneven patterns of 6mA methylation across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Our findings provide evidence that 6mA modification is an epigenetic mark of Phytophthora genomes and that complex patterns of 6mA methylation by the expanded 6mA methyltransferases may be associated with adaptive evolution in these important plant pathogens.
ABSTRACT. Glucosinolates (GSLs) are important secondary metabolites in Brassicaceae plants. Previous studies have mainly focused on GSL contents, types, and biosynthesis-related genes, but the molecular characterization patterns of GSL biosynthesis-related transcription factors remain largely unexplored in radish (Raphanus sativus L.). To isolate transcription factor genes regulating the GSL biosynthesis, genomic DNA and cDNA sequences of RsMYB28 and RsMYB29 genes were isolated in radish. Two R2R3-MYB domains were identified in the deduced amino acid sequences. Subcellular localization and yeast-one hybrid assays indicated that both the RsMYB28 and RsMYB29 genes were located in the nucleus and possessed transactivation activity. Reverse transcription quantitative analysis showed that the RsMYB28 and RsMYB29 genes were expressed in seeds, leaves, stems, and roots at the seedling, taproot thickening, and mature stages. Both genes were highly expressed during the seedling and taproot thickening stages. The expression level of RsMYB28 was found to be up-regulated following wounding, glucose, and abscisic acid treatments, whereas RsMYB29 was up-regulated following wounding and methyl jasmonate treatments. These results provide insights into the biological function and characterization of the RsMYB28 and RsMYB29 genes, and facilitate further dissection of the molecular regulatory mechanism underlying the GSL biosynthesis in radish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.