A combined theoretical/experimental study of the heat transfer in thermoelectric Shape Memory Alloy (SMA) actuators is undertaken in this paper. A one-dimensional model of a thermoelectric unit cell with a SMA junction is developed rst and the transient temperatures in the SMA are evaluated for dierent applied electric current densities. As a rst step towards the design of an actuator, a thermoelectric module is assembled in the laboratory for cooling/heating the SMA. Transient temperature proles are recorded for the monotonic heating and cooling runs for two dierent materials copper and SMA (with or without the phase transformation). These recorded proles are then compared with the predictions from the model; the agreement is reasonable, particularly during the cooling process. Temperature proles are also recorded for cyclic cooling and heating of copper at a frequency of 0.5 Hz and a good comparison is obtained. Theoretical predictions for thermal cycling of SMA show that it is possible to achieve a frequency of 2 Hz on full phase transformation and 17 Hz on partial transformation of 25%.
The phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in an endoplasmic reticulum (ER)-Golgi/endosome membrane contact site (MCS) that facilitates phosphatidylserine decarboxylation to phosphatidylethanomaine (PtdEtn) in Saccharomyces cerevisiae. While this MCS is envisioned to consist of Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and at least one other uncharacterized protein, functional data that address key foundations of this model are sparse.We now report that Psd2, Sfh4 and Stt4 are the only components individually required for biologically sufficient Psd2-dependent PtdEtn production. Surprisingly, neither the PtdInstransfer activity of Sfh4 nor its capacity to activate Stt4 is required to stimulate the Psd2 pathway.Instead, Sfh4 activates the Psd2 pathway via a specific Sfh4-Psd2 physical interaction. Whereas the data indicate an Sfh4-independent association of Stt4 with Psd2 as well, we find Stt4 also regulates Psd2 activity indirectly by influencing the PtdSer pool accessible to Psd2 for decarboxylation. These collective results demonstrate that the proposed ER-Golgi/endosomal MCS model fails to provide an accurate description of the Psd2 system in yeast, and provide an example where the biological function of a Sec14-like PITP is uncoupled from its 'canonical' activity as a PtdIns transfer protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.