Renal fibrosis, particularly tubulointerstitial fibrosis is considered to be the final manifestation of almost all chronic kidney diseases (CKDs). Herein we demonstrated evidence that CHOP-related ER stress is associated with the development of renal fibrosis in both CKD patients and unilateral ureteral obstruction (UUO)-induced animals, and specifically, mice deficient in Chop were protected from UUO-induced renal fibrosis. Mechanistic studies revealed that loss of Chop protected tubular cells from UUO-induced apoptosis and secondary necrosis along with attenuated Hmgb1 passive release and active secretion. As a result, Chop deficiency suppressed Hmgb1/TLR4/NFκB signaling, which then repressed UUO-induced IL-1β production. Consequently, the IL-1β downstream Erk1/2 activity and its related c-Jun transcriptional activity were reduced, leading to attenuated production of TGF-β1 following UUO insult. It was further noted that reduced IL-1β production also inhibited UUO-induced PI3K/AKT signaling, and both of which ultimately protected mice from UUO-induced renal fibrosis. Together, our data support that suppression of CHOP expression could be a viable therapeutic strategy to prevent renal fibrosis in patients with CKDs.
Galectin-3 (Gal3) has important roles in tumor transformation and metastasis. This study shows that c-Abl and Abl-related gene (Arg) associate with and phosphorylate Gal3. The SH (Src homology)3 domains of c-Abl/Arg bind to a P 80 GPPSGP motif of Gal3, and Tyr79 and Tyr118 are the major tyrosine phosphorylation sites. A consequence of this interaction and phosphorylation is the significant impairment of chaperone-mediated autophagy of Gal3. Cells expressing Gal3 and treated with the c-Abl/Arg inhibitor STI571, Gal3-depleted cells, and Gal3-depleted cells expressing Gal3 phosphorylation mutants all display an increased sensitivity to apoptosis-inducing agents. In addition, tumor cells expressing the phosphorylation mutants show impaired tumorigenicity. These results partially explain the antiapoptotic effect of Abl and Arg. As tumors frequently overexpress Gal3, a c-Abl/Arg-specific inhibitor may potentially be applied along with other antitumor drugs to target the lysosomal degradation of Gal3 in tumor therapy.
Multiple signaling pathways that promote tumor cell metastasis are differentially activated in low/non-metastatic and metastatic tumor cells, resulting in the differential expression of metastasis-related genes. The underlying mechanism may involve the alterations of the intrinsic negative regulation in tumor cells. Here we report that the differential expression of interleukin-37b (IL-37b) in tumor cells alters the intrinsic negative regulation of signaling pathways, resulting in the difference of metastatic capacity. IL-37b could bind Smad3 and suppress Smad pathway by interfering with the formation and nuclear translocation of Smad2/3/4 complex. In turn, Smad3 could function as a co-regulator, enabling IL-37b to suppress multiple non-Smad pathways. IL-37b-Smad3 translocated into nucleus to upregulate the expression of non-receptor protein tyrosine phosphatases (PTPNs), thus promoting dephosphorylation to suppress the activation of tyrosine phosphorylation-dependent signaling pathways such as ERK, p38 MAPK, JNK, PI3K, NF-κB, and STAT3 pathways. Intriguingly, 13 of 17 PTPNs, most of which are metastasis suppressors, were downregulated in metastatic tumor cells because of the low expression of IL-37b. The marked decrease of intracellular IL-37b attenuated the intrinsic negative regulation in tumor cells, resulting in the enhanced activation of multiple signaling pathways and the increased capacity of invasiveness and metastatic colonization. Consistently, low expression of IL-37b in tumors was significantly associated with poor prognosis of cancer patients. Taken together, these findings reveal that intracellular IL-37b is a critical factor in the negative regulation of multiple signaling pathways that modulate the expression of metastasis-related genes, and suggest that IL-37b expression in tumor cells can potentially be a histopathological prognostic parameter for cancer patients and a therapeutic target for preventing tumor metastasis.
As enveloped virus, SARS-CoV-2 membrane protein (M) mediates viral release from cellular membranes, but the molecular mechanisms of SARS-CoV-2 virions release remain poorly understood. Here, we performed RNAi screening and identified the E3 ligase RNF5 which mediates ubiquitination of SARS-CoV-2 M at residue K15 to enhance the interaction of viral envelope (E) with M. M-E complex ensures the uniform size of viral particles for viral maturation and mediates viral release. Moreover, overexpression of M induces complete autophagy which is dependent on RNF5-mediated ubiquitin modification. M inhibits the activity of lysosome protease, and uses autolysosomes for virion release. Consequently, all these results demonstrate that RNF5 mediates ubiquitin modification of SARS-CoV-2 M to stabilize the M-E complex and induce autophagy for virion release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.