Background/Objectives: To determine whether exposure to the Chinese famine during fetal life and early childhood was associated with a greater risk of metabolic syndrome in later life. Subjects/Methods: We used data of adults from the 2008 annual physical examinations in Public Health Center of the First Affiliated Hospital of Chongqing Medical University in Chongqing. To minimize misclassification of the famine exposure periods, subjects born in 1959 and 1962 were excluded. Totally, 5040 participants were enrolled and categorized into control (1963)(1964), fetally exposed (1960)(1961) and postnatally exposed (1957)(1958) group. We adopted the definition of metabolic syndrome recommended by the Chinese Diabetes Society in 2004. Results: Women in fetally and postnatally exposed groups had significantly higher prevalences of metabolic syndrome than in control group (7.3% and 8.6% vs 4.0%, Po0.05, respectively). Women in fetally and postnatally exposed groups had a significantly higher risk of metabolic syndrome, as compared with control women (odds ratio (OR) 1.87 (95% confidence interval (CI) 1.15-3.04, P ¼ 0.012), OR 1.50 (95% CI 1.20-1.87, P ¼ 0.0003), respectively). Similar association was not observed among men. The prevalences of metabolic syndrome among men in control, fetally and postnatally exposed groups were 20.1%, 22.5% and 18.8%, respectively, but there was no significant difference of prevalences among the three groups. Conclusions: We found that exposure to the Chinese famine in early life period was associated with higher risk of metabolic syndrome in adulthood of women, but not men. This gender difference might be due to the mortality selection and son preference hypothesis.
ABSTRACT. Proton nuclear magnetic resonance ([1 H]-NMR) spectroscopy has been used to investigate metabolites in serum and several types of tissue. We used NMR spectroscopy to explore the differential metabolic profiles in serum from nasopharyngeal carcinoma (NPC) patients. Moreover, metabolites with potential as biomarkers for identifying NPC patients were primarily identified. Serum samples were collected from 40 enrolled participants comprising 20 healthy subjects and 20 NPC patients. Samples were analyzed using a 600-MHz NMR spectrometer. The [ 1 H]-NMR spectra were further analyzed with partial least squares-discriminant analysis for screening differential metabolites. NMR spectroscopy identified a total of eight metabolites that were present at different levels when the sera of NPC patients were compared with those of healthy individuals. Methionine, taurine (P < 0.05), and choline-like metabolites (P < 0.05) were mostly elevated in the sera of NPC patients. In contrast, the levels of lipids (P < 0.01), isoleucine (P < 0.05), unsaturated lipids (P < 0.01), trimethylamine oxidase (P < 0.05), and carbohydrates (P < 0.05) were lower in the sera of the NPC patients than in the healthy controls. We explored the differential metabolic profiles in sera from NPC patients. [1 H]-NMR spectroscopy can be used to identify specific metabolites, and is capable of distinguishing between NPC patients and healthy individuals.
Poly (ADP-ribose) glycohydrolase (PARG), which was discovered during studies on DNA damage study and in inflammation research, is an attractive target protein in current cancer research. The enzymatic hydrolysis of poly (ADP-ribose) (PAR) has not been clarified in the regulation of cancer. The purpose of this study was to understand the relationship between PARG and the adhesion of colorectal carcinoma CT26 cells to platelets. PARG was silenced by short hairpin RNA (shRNA) transfection in CT26 cells. A fluorescence method was used to identify adhesion of CT26 cells to platelets and the expression of poly (ADP-ribose) polymerase (PARP)-1, p-Akt, nuclear factor kappa-B (NF-κB), P-selectin and intercellular adhesion molecule-1 (ICAM-1) was analyzed by western blot in various treated groups and control groups. The results were as follows: (a) PARG silencing led to inhibition of adhesion of CT26 cells to platelets, whereas an inhibitor of p-Akt boosted adhesion of PARG-short hairpin RNA interference (shRNAi) CT26 cells to platelets; (b) a PARP-1 inhibitor depressed the expression of P-selectin and ICAM-1 in CT26 cells; (c) PARG silencing increased phosphorylation of Akt and decreased expression of PARP-1, NF-κB, ICAM-1 and P-selectin in CT26 cells; and (d) a p-Akt inhibitor intensified expression of NF-κB, ICAM-1 and P-selectin in PARG-shRNAi CT26 cells accordingly. These results showed the effectiveness of knockout of PARG in inhibiting adhesion of CT26 cells to platelets and its connection with the phosphatidylinositol 3 kinase/Akt pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.