Many drought indices were proposed to describe drought characteristics, but only few had considered environmental changes. In an attempt to incorporate climate change into meteorological drought index, a nonstationary Gamma distribution with climate indices as covariates was developed for fitting precipitation data and then used for calculating a Nonstationary Standardized Precipitation Index (NSPI) in this study. The performances of the NSPI were compared with those of the traditional Standardized Precipitation Index (SPI), showing that the NSPI capable of taking climate variations into account is more robust than the traditional SPI. Focusing on the Luanhe River basin, historical drought events were described and assessed based on the NSPI and traditional SPI. Moreover, drought characteristics, including drought frequency, peak, duration, and magnitude, were calculated by using the two indices. The results in this study indicated that NSPI using climate indices as covariates could capture drought characteristics in the Luanhe River basin, and this new drought index provides a new concept for constructing the drought index that can effectively adapt to a changing environment.
Corncob, a widespread and inexpensive natural resource in China, was used to prepare activated carbon (AC) by chemical activation with potassium hydroxide (KOH). The adsorption equilibrium and kinetics of H2, CH4, and CO2 on AC were investigated at different temperatures. Adsorption isotherms of H2, CH4, and CO2 were correlated with the Langmuir and Freundich equations, and the heat of adsorption was determined. It was revealed that the Freundich adsorption equation was more apt to describe the adsorption procedure of H2, CH4, and CO2 compared to the Langmuir equation. Two simplified kinetic models including pseudo-first-order and -second-order equations were used to evaluate the adsorption processes. The results indicated that the adsorption of H2, CH4, and CO2 could be described properly by a pseudo-second-order equation. The kinetic parameters of this model were calculated and discussed.
Fe-incorporated amorphous TiO2 films with different Fe volume fractions of 0.46⩽x⩽0.76 were deposited by cosputtering iron and Ti targets in an Ar+O2 mixture. X-ray diffraction and x-ray photoelectron spectroscopy analyses give a structure of nanosized Fe particles embedded in amorphous TiO2 matrix for the Fex(TiO2)1−x films. Magnetic measurements show antiferromagnetic coupling between nanoscaled Fe granules when x<0.60. The magnetoresistance of Fe0.46(TiO2)0.54 is about −7.6% at room temperature, which increases dramatically with decreasing temperature below ∼100K and reaches −29.3% at 3K. This significant enhancement of magnetoresistance can be qualitatively explained by antiferromagnetic coupling between Fe granules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.