Identified charged-particle spectra of π ± , K ± , p, and p at midrapidity (|y| < 0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d + Au collisions at √ s NN = 200 GeV and for Au + Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm 3 for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly 034909-2 SYSTEMATIC MEASUREMENTS OF IDENTIFIED . . . (2009) with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase-transition temperature, suggesting that chemical freeze-out happens in the vicinity of hadronization and the chemical freeze-out temperature is universal despite the vastly different initial conditions in the collision systems. The extracted kinetic freeze-out temperature, while similar to the chemical freeze-out temperature in pp, d + Au, and peripheral Au + Au collisions, drops significantly with centrality in Au + Au collisions, whereas the extracted transverse radial flow velocity increases rapidly with centrality. There appears to be a prolonged period of particle elastic scatterings from chemical to kinetic freeze-out in central Au + Au collisions. The bulk properties extracted at chemical and kinetic freeze-out are observed to evolve smoothly over the measured energy range, collision systems, and collision centralities. PHYSICAL REVIEW C 79, 034909
Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent ρ 0 photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent ρ 0 photoproduction with nuclear breakup is 10.5 ± 1.5 ± 1.6 mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is 4.4 ± 0.6, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed 15% ± 55% increase between 130 GeV and 200 GeV.
We have implemented the Tsallis statistics in a Blast-Wave model and applied it to mid-rapidity transverse-momentum spectra of identified particles measured at RHIC. This new Tsallis Blast-Wave function fits the RHIC data very well for pT <3 GeV/c. We observed that the collective flow velocity starts from zero in p+p and peripheral Au+Au collisions growing to 0.470 ± 0.009(c) in central Au+Au collisions. The (q − 1) parameter, which characterizes the degree of non-equilibrium in a system, changes from 0.100 ± 0.003 in p+p to 0.015 ± 0.005 in central Au+Au collisions, indicating an evolution from a highly non-equilibrated system in p+p collisions toward an almost thermalized system in central Au+Au collisions. The temperature and collective velocity are well described by a quadratic dependence on (q − 1). Two sets of parameters in our Tsallis Blast-Wave model are required to describe the meson and baryon groups separately in p+p collisions while one set of parameters appears to fit all spectra in central Au+Au collisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.