One of the modern antibacterial agents that are an alternative to antibiotics are nanoparticles of noble metals, including silver. To reduce their toxicity, cumulative effect and prolong the effect in animals, there is ongoing work on development and improvement of the methods for their synthesis using various carriers, including those based on polymer/inorganic hybrids. In this study, the quality and safety of edible eggs were determined on Hy-Line laying hens using W36 solutions of nanosilver in carriers based on polymer/inorganic hybrids (AgNPs/SPH) in the concentration of 0.0, 1.0 and 2.0 mg/L of water (0.0, 0.2 and 0.4 mg per hen per day) three times with 10 day interval. We determined that one-, two- and three-time feeding of nanosilver in doses of 0.0, 0.2 and 0.4 mg per hen per day did not affect water consumption, feed, egg productivity, as well as dry matter content, crude protein, fat, ash, and calcium and phosphorus in eggs for 30 days. Contamination of the surface of the shell and yolks of eggs with mesophilic aerobic and facultative anaerobic microorganisms (MAFAnM) did not depend on the dose and duration of consumption of the nanosilver drug by laying hens. The nanosilver drug in doses of 0.0, 0.2 and 0.4 mg per hen per day did not affect the contamination of the egg shell surface with microorganisms of genera Citrobacter, Klebsiella, as well as Escherichia coli, Proteus mirabilis, Salmonella spp., Staphylococcus aureus and S. epidermidis. When administered orally, nanosilver in the dose of 0.2 mg per hen per day did not change the number of symbiotic microorganisms of genera Bifidobacterium and Lactobacillus, while and the dose of 0.4 mg per hen daily slightly reduced the number of microorganisms of genus Lactobacillus in the hens’ manure. The obtained data can be used for further research to determine the effective dose and interval of application of nanosilver preparations to poultry for preventive and therapeutic measures, taking into account the preservation of the microbiome of the digestive system of hens.
The search for an alternative to antibiotics in poultry has led to a study of the effectiveness of using nanosilver preparations in the production of table eggs. The experiment determined the effect of the drug nanosilver in carriers based on polymer/inorganic hybrids (AgNPs/SPH) on morphological and biochemical parameters of the blood of laying hens. For this, 45 Hy-Line W36 hens were used at the age of 38 weeks, which were randomly divided into three groups. The AgNPs/SPH solution was administered 3 times a month with an interval of 10 days at concentrations of 0.0, 1.0, and 2.0 mg/L (0.0, 0.2 and 0.4 mg per hen per day). The introduction of AgNPs/SPH in doses of 0.2 and 0.4 mg per hen per day three times a month did not have a significant effect on the morphological parameters of the blood. A single dose of 0.2 mg AgNPs/SPH solution per hen per day increased the level of total protein, glucose, cholesterol, as well as the activity of alanine aminotransferase and alkaline phosphatase in the blood serum and decreased albumin, creatinine and gamma-glutamyl transpeptidase activity. Feeding laying hens a solution of nanosilver in a larger dose had a less pronounced effect on these indicators. Two-fold administration of AgNPs/SPH solution at a dose of 0.2 mg per laying hen per day increased only gamma-glutamyl transpeptidase activity in the blood serum, but decreased the level of total activity of protein, albumin, phosphorus, and alkaline phosphatase. At the same time, the drug nanosilver in double dose per day caused an increase in albumin content and alkaline phosphatase activity in the serum of hens. Triple feeding of laying hens with a solution of nanosilver at a dose of 0.2 mg per hen per day did not affect most of the biochemical parameters of serum, but in the double dose increased the content of total protein against the background of lowered cholesterol and gamma-glutamyl transpeptidase activity. With the increase in the frequency of feeding laying hens solutions of nanosilver in carriers based on polymer / inorganic hybrids, the level of severity of their impact on the metabolic profile of serum decreased. The results of research can be the basis for determining the optimal interval of application of nanosilver drugs in poultry, depending on the method of their synthesis and stabilization.
The solution to the problem of reducing the use of antibiotics in the production of edible eggs is possible through the development and use of alternative bactericidal preparations, including those based on nanosilver. Obtaining biocompatible and biodegradable polymer/inorganic carriers of nanosilver provides for the study of its cumulative qualities which determine the safety of edible chicken eggs. The study investigated the mineral composition of edible eggs when feeding Hy-Line W36 laying hens solutions of the nanosilver preparation in carriers based on polymer/inorganic hybrids (AgNPs/SPH) given in the concentrations of 0, 1.0, and 2.0 mg/L of water (0, 0.2 and 0.4 mg/hen per day) three times at 10 day intervals. Oral administration to laying hens of an aqueous solution of silver nanoparticles in carriers based on polymer/inorganic hybrids at doses of 0.2 and 0.4 mg per hen per day in a dose-dependent manner increased the silver content and did not significantly affect the content of copper, zinc, iron, and lead in the eggshell. The preparation of silver nanoparticles did not affect the content of silver, copper, zinc, iron and lead in the albumen and yolk of chicken eggs after the first and second application, and after the third treatment of laying hens contributed to an increase in the silver content in the egg albumen and yolk but did not affect the content in them of copper, zinc, iron and lead. A single feeding of a solution of a preparation of nanosilver in carriers based on polymer/inorganic hybrids to hens at doses of 0.2 and 0.4 mg per hen per day after 10 days, contributed to a significant increase in the yolks of chicken eggs due to a decrease in the albumen and eggshell. The second and third application of nanosilver to poultry in the indicated doses contributed to a decrease in its proportion in the albumen and in the yolk due to a significant increase in its proportion in the shell. Selective accumulation of in-shell silver can be a promising means of improving the safety and security of chicken eggs when they are microbially contaminated. The results of using nanosilver based on polymer/inorganic hybrids in laying hens can be the basis for the development of methods for increasing the bactericidal properties of the shell and the safety of edible eggs.
Nanosilver preparation is synthesized in the carriers based on polymer/inorganic hybrids in aqueous dispersion form by in situ synthesis of silver nanoparticles in biocompatible and biodegradable polymer/inorganic hybrid based on silica sol and polyacrylamide. Hydrophilic polymer/inorganic hybrid used as a carrier for silver nanoparticles was synthesized by the developed method of directly grafting polyacrylamide "from" the unmodified surface of silica sol. The size of silver particles in the preparation was <10 nm. Studies have found that single, double and three-fold sprinkling of laying hens of nanosilver in polymer/inorganic hybrid carriers at concentrations of 1.0 and 2.0 mg/l (at doses of 0.2 and 0.4 mg per hen per day) did not affect the consumption of feed, water and egg productivity of poultry. The obtained nanosilver preparation is safe for laying hens and it does not cause disorders of clinical condition, diseases and poultry death during three-fold drinking with 10 days interval. After drinking the preparation of nanosilver to the laying hens at doses of 0.2 and 0.4 mg per head per day with an interval of 10 days, the dose-dependent amount of silver in the manure was increased only after a single drinking and after double and triple drinking, it did not affect the content of silver, copper, zinc, iron and lead. Single drinking of laying hens with a solution of silver nanoparticles in carriers based on polymer/hybrids at a concentration of 1.0 mg/l (0.2 mg per hen per day) increased the silver content in hen manure by 20% compared to the control group, and it did not affect the content of copper, zinc, iron and lead in manure. Nanosilver preparation at a concentration of 2.0 mg/l (0.4 mg per hen per day) increased the silver content by 44% in hen manure on the 10th day only after the first drinking of the preparation and it did not affect the content of copper, zinc, iron and lead compared to the control and with similar data of hens to which the same preparation was given at a concentration of 1.0 mg/l.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.