We investigate experimentally a Casimir-like effect in a three-dimensional pile of rice, which has a powerlaw avalanche size distribution. We observe the change in distance between two Plexiglas sheets placed on the pile parallel to each other and parallel to the mean avalanche flow direction, while rice grains are continuously and uniformly falling on top of the pile. The resulting avalanches are fluctuations, confinement of which is found to drive the two plates together. During 25-h experimental runs, for initial intersheet distances ranging from 20.0 to 90.0 mm we observe changes in the range from 6.0 mm to less than 1.0 mm. A similar distance dependence is obtained from a simple analytical model.
We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ ), the critical angle (γ ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ . However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.
Using a modified Bak-Tang-Wiesenfeld model for sand piles, we simulate a Casimir-like effect in a granular pile with avalanches. Results obtained in the simulation are in good agreement with results previously acquired experimentally: two parallel walls are attracted to each other at small separation distances, with a force decreasing with increasing distance. In the simulation only, at medium distances a weak repulsion exists. Additionally, with the aim of avalanche prevention, the possibility of suppressing self-organized criticality with an array of walls placed on the slope of the pile is investigated, but the prevention effect is found to be negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.