DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The manner in which an ultra-lean hydrogen flame stabilizes and blows off is crucial for the understanding and design of safe and efficient combustion devices. In this study, we use experiments and numerical simulations for pure errortypeceH2-air flames stabilized behind a cylindrical bluff body to reveal the underlying physics that make such flames stable and eventually blow-off. Results from CFD simulations are used to investigate the role of stretch and preferential diffusion after a qualitative validation with experiments. It is found that the flame displacement speed of flames stabilized beyond the lean flammability limit of a flat stretchless flame (ϕ=0.3) can be scaled with a relevant tubular flame displacement speed. This result is crucial as no scaling reference is available for such flames. We also confirm our previous hypothesis regarding lean limit blow-off for flames with a neck formation that such flames are quenched due to excessive local stretching. After extinction at the flame neck, flames with closed flame fronts are found to be stabilized inside a recirculation zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.