ABSTRACT.This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia Hiseq TM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.
ABSTRACT. The tree peony leaf is an important vegetative organ that is sensitive to abiotic stress and particularly to high temperature. This sensitivity affects plant growth and restricts tree peony distribution. However, the transcriptomic information currently available on the peony leaf in public databases is limited. In this study, we sequenced the transcriptomes of peony leaves subjected to high temperature using the Illumina HiSeq TM 2000 platform. We performed de novo assembly of 93,714 unigenes (average length of 639.7 bp). By searching the public databases, 22,323 unigenes and 13,107 unigenes showed significant similarities with proteins in the NCBI non-redundant protein database and SWISS-PROT database (E-value < 1e-5), respectively. We assigned 17,340 unigenes to Gene Ontology categories, and we assigned 7618 unigenes to clusters of orthologous groups for eukaryotic complete genomes. By searching the Kyoto Encyclopedia of Genes and Genomes Pathway database, 8014 unigenes were assigned to 6 main categories, including 290 KEGG pathways. To advance research on improving thermotolerance, we identified 24 potential heat shock protein genes with complete open reading frames from the transcriptomic sequences. 8431-8442 (2015) This is the first study to characterize the leaf transcriptome of tree peony leaf using high-throughput sequencing. The information obtained from the tree peony leaf is valuable for gene discovery, and the identified heat shock protein genes can be used to improve plant stress-tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.