In underground mines, excavating disturb the initial equilibrium state of the rock mass, and therefore require selection of a support in order to control the movement of rocks, avoid landslide and work safely. Thus, the progress of mining operations in the ST2 mineralization, in the eastern zone of the Bouazzer mine, is disrupted because of stability problems. On the basis of field observations and analyzes of core drill, the geological and structural study, carried out in this area, has shown the existence of three types of facies: altered and cracked diorite, cobaltiferous mineralization which is in contact with serpentinites. In fact, the empirical methods such as Barton, Bieniawski and the recommendations of the AFTES have qualified the rock mass as poor, furthermore they proposed as kind of supports: steel arches, shotcrete and rock-bolts. Numerical simulation by the finite element method proved to be very complex due to existence of several types of discontinuities (faults, shistosities and joints).These discontinuities are natural fractures that delimit various shapes and sizes of wedges, which can become detached from the roof or siding of the excavation and collapse under their own weight. Although the empirical methods cited above provide supports for each facies, however, this support is expensive and difficult to implement in practice because it must cover the entire surface of the excavation and thus not allowing to detect stable blocks that do not require a support. For this it was essential to carry out an analysis of wedges to better locate unstable blocks. The treatment of fracturing data has highlighted the presence of five sets of discontinuities of which three sets are principals and the other two are minor joints. Then, while taking into account the geometrical, mechanical data of the discontinuities as well as the geometrical data of the excavation, we were able to detect the shape and the size of the unstable blocks and the sets of discontinuities delimiting them and which favor their sliding and tilting. Thus, we calculated the number of anchor bolts needed to stabilize these blocks in order to ensure an acceptable safety factor. This study shows clearly how a wedge analysis of the rock mass can guide and optimize the support work.
Purpose. Discontinuities in rock masses are natural fractures that delimit various block shapes and sizes, which can fall, slide or topple from the excavation and collapse under their own weight inducing probably severe damage. Thus, it is essential to carry out a block analysis before beginning any surface or underground excavation project. This paper proposes a methodology based on key block theory analysis to select the suitable slope of different discontinuous rock masses of an open-pit mine in Morocco. Methods. At first, the main discontinuities of each bench are determined and projected onto a stereonet with a maximum dip angle of the excavation plane. Then, it is possible to identify the removable blocks by using the theorem of removability according to block theory. After that, a limit equilibrium analysis is performed to determine the failure mode and the friction angle required to stabilize the blocks. When the selected dip angle of the slope plane is found to be unsuitable, it is changed and reduced by one degree, and the same approach is repeated until the maximum safe slope dip angle is obtained. Findings. The results of the proposed methodology based on key block theory analysis have shown that the maximum safe slope angles of the studied benches are in the range of 63-73°. When compared to the slope angles used in the mine, which are between 58-78°, the results of this study are close to in-situ conditions. Originality. In this research, the maximum safe slope angle of fractured rock masses was optimized by eliminating slope angles inducing unstable blocks (key blocks) and by using the stereographic projection method of key block theory. Practical implications. Using this methodology, stability of rock slopes in civil or mining-engineering projects can be designed or assessed when geotechnical data are very limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.