Cr catalysts supported on silica, zeolite NaY, and charcoal were prepared with two different methods. They were characterized and examined in the polymerization of ethene. Cyclic voltammetry, electron spin resonance, X‐ray photoelectron spectroscopy and silicon‐29 magic‐angle spinning nuclear magnetic resonance spectroscopy were used to characterize them, demonstrating that Cr is not in a single oxidation state, that the distribution among the various oxidation states depends on the history of the sample, and that even for a single oxidation state a variety of different environments can occur. In the polymerization of ethene, the supported Cr catalysts exhibited activity values varying from 103 to 105 gPE · molCr−1 · [M]−1 · h−1, depending on the choice of the support and on the method by which the Cr is placed on it. Silica seemed to be the most efficient support for Cr for this reaction. However, the zeolite‐supported catalysts also showed reasonable activity values (Ap ≅ 104 units) and presented the advantage of having a strong interaction between the Cr and the support, which may prevent leaching of the cation into the surrounding environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3768–3780, 2003
Kinetic models for ethylene polymerization based on a general coordination–insertion mechanism, in which either a monocoordinated species or a bicoordinated species could lead to migratory insertion, were constructed. These models were implemented through the solution of a set of differential equations resulting from the material balances for all the species involved. The application of these kinetic models to monomer consumption for different supported catalysts produced very good fittings and allowed the estimation of the kinetic rate constants of each elementary step. Although the same kinetic scheme was used to describe all the observations, the results of the fitting showed that the supported chromium species behaved very differently according to the support. Only in the case of the silica‐supported catalysts was mechanical fragmentation of the particles observed during the course of the reaction, and this implied the inclusion of a new term in the model. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3464–3472, 2004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.