Changing trends in foodborne disease are influenced by many factors, including temperature. Globally and in Australia, warmer ambient temperatures are projected to rise if climate change continues. Salmonella spp. are a temperature-sensitive pathogen and rising temperature can have a substantial effect on disease burden affecting human health. We examined the relationship between temperature and Salmonella spp. and serotype notifications in Adelaide, Australia. Time-series Poisson regression models were fit to estimate the effect of temperature during warmer months on Salmonella spp. and serotype cases notified from 1990 to 2012. Long-term trends, seasonality, autocorrelation and lagged effects were included in the statistical models. Daily Salmonella spp. counts increased by 1·3% [incidence rate ratio (IRR) 1·013, 95% confidence interval (CI) 1·008-1·019] per 1 °C rise in temperature in the warm season with greater increases observed in specific serotype and phage-type cases ranging from 3·4% (IRR 1·034, 95% CI 1·008-1·061) to 4·4% (IRR 1·044, 95% CI 1·024-1·064). We observed increased cases of S. Typhimurium PT9 and S. Typhimurium PT108 notifications above a threshold of 39 °C. This study has identified the impact of warm season temperature on different Salmonella spp. strains and confirms higher temperature has a greater effect on phage-type notifications. The findings will contribute targeted information for public health policy interventions, including food safety programmes during warmer weather.
Investigated in this paper is the first on the moving-load-caused nonlinear coupled dynamics of beam-mass systems. A constant value load excites the beam-mass system where its position on the beam-mass system changes periodically. The energy contribution of the moving load is included via a virtual work formulation. The kinetic energy of the mass together with the beam as well as energy stored in the beam after deflection is formulated. Hamilton's principle gives nonlinear equations of the beam-mass system under a moving load in a coupled transverse/longitudinal form. A weighted-residual-based discretisation gives a 20 degree of freedom which is numerically integrated via continuation/time integration along with Floquet theory techniques. The resonance dynamics in time, frequency, and spatial domains is investigated. As we shall see, torus bifurcations are present for some beam-mass structure parameters as well as travelling waves. A finite element analysis is performed for a simpler linear version of the problem for to-some-extend verifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.