We screened the electronic records of 2,799 patients admitted in Tongji Hospital from January 10th to February 18th, 2020. There were 375 discharged patients including 201 survivors. We built a prognostic prediction model based on XGBoost machine learning algorithm and then tested 29 patients (included 3 patients from other hospital) who were cleared after February 19th. Results:The mean age of the 375 patients was 58.83 years old with 58.7% of males. Fever was the most common initial symptom (49.9%), followed by cough (13.9%), fatigue (3.7%), and dyspnea (2.1%). Our model identified three key clinical features, i.e., lactic dehydrogenase (LDH), lymphocyte and High-sensitivity C-reactive protein (hs-CRP), from a pool of more than 300 features. The clinical route is simple to check and can precisely and quickly assess the risk of death. Therefore, it is of great clinical significance. : medRxiv preprint Conclusion:The three indices-based prognostic prediction model we built is able to predict the mortality risk, and present a clinical route to the recognition of critical cases from severe cases. It can help doctors with early identification and intervention, thus potentially reducing mortality.
Unmanned aerial vehicle (UAV) multispectral imagery has been applied in the remote sensing of wheat SPAD (Soil and Plant Analyzer Development) values. However, existing research has yet to consider the influence of different growth stages and UAV flight altitudes on the accuracy of SPAD estimation. This study aims to optimize UAV flight strategies and incorporate multiple feature selection techniques and machine learning algorithms to enhance the accuracy of the SPAD value estimation of different wheat varieties across growth stages. This study sets two flight altitudes (20 and 40 m). Multispectral images were collected for four winter wheat varieties during the green-up and jointing stages. Three feature selection methods (Pearson, recursive feature elimination (RFE), and correlation-based feature selection (CFS)) and four machine learning regression models (elastic net, random forest (RF), backpropagation neural network (BPNN), and extreme gradient boosting (XGBoost)) were combined to construct SPAD value estimation models for individual growth stages as well as across growth stages. The CFS-RF (40 m) model achieved satisfactory results (green-up stage: R2 = 0.7270, RPD = 2.0672, RMSE = 1.1835, RRMSE = 0.0259; jointing stage: R2 = 0.8092, RPD = 2.3698, RMSE = 2.3650, RRMSE = 0.0487). For cross-growth stage modeling, the optimal prediction results for SPAD values were achieved at a flight altitude of 40 m using the Pearson-XGBoost model (R2 = 0.8069, RPD = 2.3135, RMSE = 2.0911, RRMSE = 0.0442). These demonstrate that the flight altitude of UAVs significantly impacts the estimation accuracy, and the flight altitude of 40 m (with a spatial resolution of 2.12 cm) achieves better SPAD value estimation than that of 20 m (with a spatial resolution of 1.06 cm). This study also showed that the optimal combination of feature selection methods and machine learning algorithms can more accurately estimate winter wheat SPAD values. In addition, this study includes multiple winter wheat varieties, enhancing the generalizability of the research results and facilitating future real-time and rapid monitoring of winter wheat growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.