We monitored the position of the close-by (about 370 Mpc) gamma-ray burst GRB 190829A, which originated from a massive star collapse, through very long baseline interferometry (VLBI) observations with the European VLBI Network and the Very Long Baseline Array, carrying out a total of nine observations between 9 and 117 days after the gamma-ray burst at 5 and 15 GHz, with a typical resolution of a few milliarcseconds. From a state-of-the art analysis of these data, we obtained valuable limits on the source size and expansion rate. The limits are in agreement with the size evolution entailed by a detailed modeling of the multiwavelength light curves with a forward-plus-reverse shock model, which agrees with the observations across almost 18 orders of magnitude in frequency (including the HESS data at TeV photon energies) and more than 4 orders of magnitude in time. Thanks to the multiwavelength, high-cadence coverage of the afterglow, inherent degeneracies in the afterglow model are broken to a large extent, allowing us to capture some unique physical insights; we find a low prompt emission efficiency of ≲10−3, a low fraction of relativistic electrons in the forward shock downstream χ e < 13% (90% credible level), and a rapid decay of the magnetic field in the reverse shock downstream after the shock crossing. While our model assumes an on-axis jet, our VLBI astrometry is not sufficiently tight as to exclude any off-axis viewing angle, but we can exclude the line of sight to have been more than ∼2° away from the border of the gamma-ray-producing region based on compactness arguments.
Context. The nature of jets in active galactic nuclei (AGNs) in the early Universe and their feedback to the host galaxy remains a highly topical question. Observations of the radio structure of high-redshift AGNs enabled by very long baseline interferometry (VLBI) provide indispensable input into studies of their properties and role in the galaxies’ evolution. To date, only five AGNs at redshift z > 6 have been studied with the VLBI technique. Aims. VIK J2318−3113 is a recently discovered quasar at z = 6.44 that had not been imaged with VLBI before the current work. Here we present the first VLBI imaging results of this high-redshift quasar, with the aim of corroborating its high-resolution appearance with the physical model of the object. Methods. We carried out VLBI phase-referencing observations of VIK J2318−3113 using the Very Long Baseline Array at two frequencies, 1.6 and 4.7 GHz, and obtained the first view at the radio structure on the milliarcsecond scale. Results. The source was clearly detected at 1.6 GHz. We found that almost all of its radio emission comes from the parsec-scale core region. Our dual-frequency observations constrain the spectral index and brightness temperature of the radio core. Its properties are similar to those of other known high-redshift radio-loud AGNs.
Context. Recently, SDSS J143016.05+230344.4 (J1430+2303) was reported to be a supermassive black hole binary (SMBHB) in the final coalescence phase. It is probably the first SMBHB coalescence event observable in human history. Radio observations of J1430+2303 before and after coalescence will provide a unique diagnosis of the energetics and environment of the SMBHB. Aims. We explore the radio emission from the galactic nucleus region that is closely related to the current X-ray and optical activities and helps to understand the state of black hole accretion and outflow before coalescence. Methods. Very long baseline interferometry (VLBI) imaging is the only method that offers milli-arcsecond-level high resolution that can exclude the contamination by diffuse emission on galactic scales. We observed J1430+2303 with the European VLBI Network at 1.7 GHz and with the Very Long Baseline Array at 1.6 and 4.9 GHz in late February and early March 2022. Results. A compact component is detected in all three VLBI images. It has a brightness temperature of > 108 K, an unresolved morphology with a size < 0.8 pc, and a flat radio spectrum. These observational features are inconsistent with large opening-angle outflows or winds, but indicate that this compact component might be a jet or a corona. Nearly 60% of the emission is resolved by VLBI and may come from remnant lobes of previous radio activities, the outer layers of a structured jet, or shocks formed by the disc winds in the narrow line region. Conclusions. Current VLBI images do not yet show signs of radio outbursts. Our observations provide pre-coalescence radio data that are an important reference for future comparative studies with the post-merger. In particular, further resolving the jet will pave the way for probing the dynamical features associated with inspiralling binary black holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.