The purpose of this work is to describe and summarize main design principles of sealing joints for cable penetrators of deepwater vehicles. The study was performed on typical sealed areas of watertight cable penetrators, like soldered joint between copper sheath of a heat resistant cable with mineral isolation (KMZh) and cable penetrator body; polymeric termination of cable ends; sealing joint of metal penetrator body in pressure hull with circular elastomeric gaskets. The case study in this paper is a metal casing attached to KMZh cable by a heat-resistant silverized brazing alloy. The quality of soldering joints was estimated metallographically, i.e. by means of optical microscopy and electronic raster spectroscopy. Watertightness of KMZh cable is ensured by reactoplast-based polymers that must be not only adequate to their operational conditions but also comply with fire safety regulations for ships. Watertightness of penetrator interface with pressure hull is achieved by means of elastomeric gaskets. The study investigated main sealing joints of penetrators, as well as the mechanisms achieving watertightness of each given joint. Analysis in ANSYS software package yielded the optimal thermal scenario of casing warm-up offering the best quality of both soldering process and adhesion to the KMZh cable. The calculation was also performed for the minimum length of brazed joint of constant width so as to ensure strength and watertightness at different external pressures. Calculation results were performed by hydraulic tests of penetrator samples. The study also identified the peculiarities of polymeric sealant selection. A promising approach for cable termination manufacturing would be to use heat-resistant materials featuring shape memory effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.