Resistance of benzimidazole fungicides is related to the point mutation of the β-tubulin gene in Sclerotinia sclerotiorum. The point mutation at codon 198 (GAG → GCG, E198A) occurs in more than 90% of field resistant populations in China. Traditional detection methods of benzimidazole-resistant mutants of S. sclerotiorum are time-consuming, tedious and inefficient. To establish a suitable and rapid detection of benzimidazole-resistant mutants of S. sclerotiorum, an efficient and simple method with high specificity was developed based on loop-mediated isothermal amplification (LAMP). Eight sets of LAMP primers were designed and four sets were optimized to specially distinguish benzimidazole-resistant mutants of S. sclerotiorum. With the optimal LAMP primers, the concentration of LAMP components was optimized and the reaction conditions were set as 60–64 °C for 60 min. This method had a good specificity, sensitivity, stability and repeatability. In the 1491 sclerotia, 614 (41.18%) were positive by LAMP, and 629 (42.19%) positive by MIC. Therefore, the LAMP assay is more feasible to detect benzimidazole-resistant mutants of S. sclerotiorum than traditional detection methods.
Optimal disease management depends on the ability to monitor the development of fungicide resistance in plant pathogen populations. Benzimidazole resistance is caused by the point mutations of the β-tubulin gene in Botrytis cinerea, and three mutations (E198A, E198K, and E198V) at codon 198 account for more than 98% of all resistant strains. Although traditional methods remain a cornerstone in monitoring fungicide resistance, molecular methods that do not require the isolation of pathogens can detect resistance alleles present at low frequencies, and require less time and labor than traditional methods. In this study, we present an efficient, rapid, and highly specific method for detecting highly benzimidazole-resistant B. cinerea isolates based on loop-mediated isothermal amplification (LAMP). By using specific primers, we could simultaneously detect all three resistance-conferring mutations at codon 198. The LAMP reaction components and conditions were optimized, and the best reaction temperatures and times were 60 to 62°C and 45 min, respectively. When B. cinerea field isolates were assessed for benzimidazole resistance, similar results were obtained with LAMP, minimal inhibition concentration, and sequencing. The LAMP assay developed in the current study was highly suitable for detection of highly benzimidazole-resistant field isolates of B. cinerea.
Cucumber target spot, caused by Corynespora cassiicola, is a devastating fungal disease in greenhouses in China. Lack of resistant cultivars and unscientific use of fungicides aggravated the difficulty to manage this disease. In recent years, resistance of C. cassiicola to benzimidazoles, quinone outside inhibitors, and succinate dehydrogenase inhibitors has occurred in China. Here, we tested the fluazinam sensitivity distribution of 79 C. cassiicola isolates from different provinces in China based on mycelial growth inhibition. The EC50 values of fluazinam ranged from 0.1002 to 0.3129 µg/ml with a mean of 0.2136 ± 0.0495 µg/ml, and the sensitivity frequency was normally distributed (P = 0.2083, Shapiro–Wilk test). Meanwhile, the EC50 values for spore germination inhibition ranged from 0.0992 to 0.2278 µg/ml with a mean of 0.1499 ± 0.0504 µg/ml. This indicated that fluazinam exhibited an excellent in vitro fungicidal activity on both mycelial growth and spore germination. In addition, fluazinam also exhibited a good in planta control efficacy on detached cucumber leaves in the protective and curative assays. Moreover, the biological and physiological characteristics of C. cassiicola as affected by fluazinam were determined. Fluazinam not only significantly inhibited respiration and adenosine triphosphate production but also caused the increase of cell membrane permeability and the dysfunctions of cellular homeostasis. Interestingly, we found that fluazinam especially damaged vacuole structures, causing the redistribution of vacuole substances. Taken together, our findings provide not only essential references for resistance management of C. cassiicola but also interesting insights for further revealing the action mode of fluazinam against plant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.