Long-term strength and durability tests are long and laborious, therefore new accelerated test methods are constantly being offered. The aim of this study is to develop a method for predicting durability based on data obtained from standard short-term tests for bending strength. The forecasting method is based on the kinetic concept of the strength of solids. The experiments were carried out on samples of structural chipboards based on urea-formaldehyde resin. The significance level for the tensile strength and time to failure in the studied temperature range from 273 to 353 °K, as well as for the loading speed from 0.81 to 98.25 mm/min, was less than 0.05, which indicates that the influence temperatures and strain rates are statistically significant. The results showed that temperature had a more significant effect on the tensile strength than the strain rate. At the same time, their effect on the time to failure is almost the same. Studies have confirmed the hypothesis of a non-linear reaction of wood composites to external thermo-moistureforce effects. The reason for the nonlinearity is the result of the interaction of variable factors with each other, but this requires special further study. The created technique allows to significantly reduce the time required for testing. The data presented in the work allow us to verify the proposed mathematical model that describes the change in the long-term strength of composite materials on wood fillers (wood composites), as well as assess the influence of external factors on the strength characteristics of the composite during production and operation.
For many years, prestressed glued beams have been successfully used, for example, in construction as supporting structures. Based on the analysis of recent studies of prestressed wooden beams, the aim of the research was to develop a design with a reduced consumption of materials. The technical result is achieved in that the method of manufacturing a prestressed straight wooden beam consists in gluing thin pre-curved lamellas to the required height, after which the glued lamella block is cut in height along the longitudinal axis and then the cut parts are glued together with each other by their curved sides (surfaces). The purpose of the experiment was to investigate the bending stiffness of a rectilinear beam glued from curved lamellae in the case when there are no preliminary stresses in the lamellae, with the case of the presence of such stresses. The first load option was to create a pre-stressed state of the beam and determine the maximum normal stresses. The prestressed state of the lamellae in the bent and fixed (glued) position was simulated by stretching the upper layers of each of the lamellae during their global contact. When bent, it was found that each of the lamellae has stretched areas in the upper part with tensile stress from SX = +25 MPa to SX = +35 MPa and compressed regions in the lower part with compression stress from SX =-30 MPa to SX =-60 MPa. The second variant of the load was to create a workload on the top plane of the beam in the absence of prestressing. The maximum deflection in the middle of the beam was URES = 1,535 mm. The values of internal stresses in this case are in the range from SX =-57 MPa in the compressed zone to SX = + 82 MPa in the tension one. The third variant of the load consisted in the presence of both prestressing and working load. The maximum deflection in the middle of the beam was URES = 0,466 mm. The values of the internal pressure with the range from SX =-10 MPa to SX =-100 MPa in the compressed area to SX = + 20 MPa to SX = + 60 MPa in tension one. The results of computational experiments show that by applying prestressed, in the direction opposite to the bending of the workload, we can compensate for the influence of the workload. It has been established that the application of the prestressing phenomenon makes it possible to create structures of rectilinear glued wooden beams of reduced material consumption, while the effect of increasing the carrying capacity of a wooden beam will be limited by the compressive strength of the material from which it is made. In order to obtain more accurate values of the increase in the coefficient of increasing the bearing capacity of the proposed construction of a wooden beams, it is planned to conduct in-vito experiments on a special software and hardware complex of the laboratory of mechanical tests of the Department of Forest Resources exploitation of the ZhNAU.
Житомирский национальный агроэкологический университет, бульвар Старый, 7, м. Житомир, 10008, Украина Проектирование и расчет решетчатых конструкций (РК) как правило проводится на основе формул сопротивления материалов. При этом, решается основная задача проектирования -создание безопасной конструкции, способной выдерживать допустимые нагрузки в течение всего времени ее эксплуатации. В качестве критерия оптимальности, при этом, может быть принят критерий минимального веса конструкции. Это особенно важно для таких областей техники, как авиация и автомобилестроение. РК широко используются в современном строительстве. В основном для перекрытия больших пролѐтов с целью уменьшения расхода применяемых материалов и облегчения конструкций, например, в строительных большепролѐтных конструкциях мостов, стропильных систем промышленных зданий, спортивных сооружений. Фюзеляж самолѐта, корпус корабля, несущий кузов автомобиля (кроме открытых кузовов, работающих как простая балка), автобуса или тепловоза, вагонная рама со шпренгелем -с точки зрения сопроматаявляются решетчатыми конструкциями. И даже если у них отсутствует как таковой каркас -решетчатую конструкцию в этом случае образуют подкрепляющие обшивку выштамповки и усилители, соответственно, в их расчѐтах на прочность применяются соответствующие методики. Особенность РК в том, что часть составляющих ее стержней работает, в основном, на растяжение, а другая часть, в основном, на сжатие. Причем стрежни, работающие на сжатие, выбираются, как правило, большего поперечного сечения для предотвращения потери их устойчивости, что приводит к увеличению веса всей конструкции.Применение феномена момента инерции плоских сечений при проектировании РК позволяет снизить общий вес за счет устойчивости сжатых стрежней. Это достигается тем, что у решетчатой конструкци, включающей верхний и нижний поясы, соединенные, например, треугольной решеткой, состоящей из стоек и раскосов, поочередно расположенных слева и справа относительно вертикальной плоскости симметрии поперечного сечения конструкции, стойки и раскосы выполнены из материала, геометрическая форма поперечного сечения которого имеет две взаимно-перпендикулярные оси симметрии, а концы стоек и раскосов повернуты друг относительно друга на угол кратный π радиан.Ключевые слова: решетчатая конструкция, оптимизация конструкции, критерии оптимальности конструкций, стрингер, нервюра, минимизация веса решетчатой конструкции.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.