Non-technical summary Critical investigation into pancreatic islet α-cell biology in health and diabetes has been sparse and inconsistent because of technical difficulties in islet isolation and dispersion into single cells. We have circumvented these difficulties by employing the pancreas slice preparation. We functionally characterized (electrophysiologically) the α-cells in their in situ native state, then loaded the tested cells with biocytin dye to subsequently confirm the cell identities by immunocytochemistry. We characterized a very large number of α-cells, which showed a wide-range distribution in the electrophysiological parameters of several ion channels (ATP-sensitive K + , Na + and Ca 2+ currents) and capacitance changes as measure of exocytosis of glucagon granules. This could explain the apparent inconsistency of previous reports on α-cells that inadvertently showed skewed data due to insufficient sampling of α-cells. Our innovative approaches will enable future studies into elucidating α-cell dysregulation in diabetes.Abstract Critical investigation into α-cell biology in health and diabetes has been sparse and at times inconsistent because of the technical difficulties with employing conventional strategies of isolated islets and dispersed single cells. An acute pancreas slice preparation was developed to overcome the enzymatic and mechanical perturbations inherent in conventional islet cell isolation procedures. This preparation preserves intra-islet cellular communication and islet architecture in their in situ native state. α-Cells within tissue slices were directly assessed by patch pipette and electrophysiologically characterized. The identity of the patched cells was confirmed by biocytin dye labelling and immunocytochemistry. α-Cells in mouse pancreas slices exhibited well-described features of I Na (excitable at physiological membrane potential), I KATP , small cell size, low resting membrane conductance, and inducible low and high voltage-activated I Ca , the latter correlating with exocytosis determined by capacitance measurements. In contrast to previous reports, our large unbiased sampling of α-cells revealed a wide range distribution of all of these parameters, including the amount of K ATP conductance, Na + and Ca 2+ current amplitudes, and capacitance changes induced by a train of depolarization pulses. The proposed pancreas slice preparation in combination with standard patch-clamping technique allowed large sampling and rapid assessment of α-cells, which revealed a wide distribution in α-cell ion channel properties. This specific feature explains the apparent inconsistency of previous reports on these α-cell ion channel properties. Our innovative approach will enable future studies into elucidating islet α-cell dysregulation occurring during diabetes.
Impaired counterregulation during hypoglycemia in type 1 diabetes (T1D) is partly attributable to inadequate glucagon secretion. Intra-islet somatostatin (SST) suppression of hypoglycemia-stimulated α-cell glucagon release plays an important role. We hypothesized that hypoglycemia can be prevented in autoimmune T1D by SST receptor type 2 (SSTR2) antagonism of α-cells, which relieve SSTR2 inhibition, thereby increasing glucagon secretion. Diabetic biobreeding diabetes-prone (BBDP) rats mimic insulin-dependent human autoimmune T1D, whereas nondiabetic BBDP rats mimic prediabetes. Diabetic and nondiabetic rats underwent a 3-h infusion of vehicle compared with SSTR2 antagonist (SSTR2a) during insulin-induced hypoglycemia clamped at 3 ± 0.5 mmol/L. Diabetic rats treated with SSTR2a needed little or no glucose infusion compared with untreated rats. We attribute this effect to SSTR2a restoration of the attenuated glucagon response. Direct effects of SSTR2a on α-cells was assessed by resecting the pancreas, which was cut into fine slices and subjected to perifusion to monitor glucagon release. SSTR2a treatment enhanced low-glucose–stimulated glucagon and corticosterone secretion to normal levels in diabetic rats. SSTR2a had similar effects in vivo in nondiabetic rats and promoted glucagon secretion from nondiabetic rat and human pancreas slices. We conclude that SST contributes to impaired glucagon responsiveness to hypoglycemia in autoimmune T1D. SSTR2a treatment can fully restore hypoglycemia-stimulated glucagon release sufficient to attain normoglycemia in both diabetic and prediabetic stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.