Herein, we fabricated a sensitive rutin electrochemical sensor via modifying glassy carbon electrode (GCE) with zeolitic imidazolate framework-8 (ZIF-8) and acetylene black (AB) in the presence of chitosan (CS). The electrochemical activity and experimental parameters of the ZIF-8-AB-CS/GCE sensor were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimal conditions, the sensor presented a reasonable linear response in the range of 0.1-10 mM with a limit of detection (LOD)as low as 0.004 mM (S/N ¼ 3). The sensor possessed good reproducibility and high stability, and was successfully applied to detect rutin tablet samples with satisfactory results, which was attributed to the synergistic effect between ZIF-8 and AB. Meanwhile, the sensor displayed a potential application for detection of other analytes in real samples. Furthermore, a probable interaction mechanism was proposed to account for the interaction between rutin and the nanocomposite electrode, which was not discussed in previous reports.
Hydroquinone (HQ) and catechol (CT) are considered as environmental pollutants with high toxicity. We have developed a simple electrochemical sensor using an anodized glassy carbon electrode modified with a stable 2-(phenylazo) chromotropic acid- (CH-) conducting polymer (PCH/AGCE). The PCH/AGCE sensor showed good electrocatalytic activity and reversibility towards the redox of HQ and CT in phosphate buffer solution (PBS, pH 7.0). The cyclic voltammetry (CV) in mixed solution of HQ and CT showed that the oxidation peaks of them became well resolved with a peak separation of 0.1 V. The detection limits of HQ and CT were 0.044 and 0.066 μM, respectively, in a wide linear response range of 1–300 μM for both. Moreover, the sensor displayed an excellent selectivity in the presence of common interferences. This study provided a simple, sensitive, and high recovery method for simultaneous and quantitative determination of HQ and CT in aqueous medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.