ABSTRACT. The developmental relationship of myosin binding proteins (myomesin, connectin and C-protein) to myosin was studied in chicken cervical somites by immunofluorescence microscopy. Muscle and non-muscle myosins initially appeared as slender rods at the same sites, and then, fused to form non-striated fibrils. As muscle myosin formed striated structures (A bands), non-muscle myosin disappeared from this structure. Myomesin (reactive with monoclonal antibodies MyB4 and MyBB78) and connectin (carboxy terminal region, reactive with monoclonal antibody T51) were seen as dots in the center of these myosin rods. These proteins then formed characteristic mature striations on non-striated fibrils of myosin. Earlier alignment of these myosin binding proteins rather than myosin indicates that the correct assembly of these proteins seems to be related to the formation of initial myosin rods as well as subsequent linear and periodic alignment of myosin molecules to form early A bands. Connectin spots reactive with 9D10 were scattered around myosin rods/myomesin dots/connectin T51 dots. These spots may represent radiating connectin filaments from these rods/dots to link myosin rods to the I-Z-I structures of myofibrils to be incorporated. Since the slow isoform of C-protein formed its characteristic bands ("doublets") prior to H zone formation within A bands by myosin, this isoform may help to precisely align myosin filaments within the A band region. The presence of the slow, then the slow and the cardiac, and finally the co-existence of the slow and the fast isoforms of C-protein may interfere with the incorporation and co-polymerization of nonadult isoforms into myofibrils.
The distribution of desmin filaments in the skeletal and cardiac muscles of experimental animals and cultured cells have been extensively studied. The purpose of this report is to identify the distribution of desmin filaments in vivo in human fetal skeletal muscle. Using 10nm gold-particle-labeling immunoelectron microscopy, desmin intermediate filaments were localized in skeletal muscles of 12, 20 and 29-week-old human fetuses. A number of desmin filaments were closely associated with the nascent nonstriated myofibrils. Nascent myofibrils were distributed in the subsarcolemmal space at all three developmental stages. Desmin, accompanying the nascent myofibrils, was most abundant after 12 weeks of gestation. An irregular network of desmin filaments was conspicuous in the subsarcolemmal space after 20 weeks of gestation. Desmin filaments penetrated the myofibrils and the Z-discs after 29 weeks of gestation. The developmental change in fine structural localization of desmin between 12, 20 and 29 weeks of gestation in human fetuses indicated that desmin filaments were involved in myofibril assembly in the subsarcolemmal space, and also in myofibrillogenesis in the inner space of the myofibrils.
The localization of contractile and regulatory proteins in early stages of epaxial primary myotome development was analyzed by immunofluorescence microscopy. Contractile proteins that appear in an ordered sequence in the rostro-caudal axis of somite development were found to reiterate that sequence in the dorso-medial-to-ventro-lateral axis of primary epaxial myotome development. Pair-wise localization of MyoD-titin, desmin-titin, and desmin-myosin defined three zones extending from the dermomyotome dorso-medial lip (DML) into the primary myotome layer. Zones M1 and M2, which were positive for MyoD ؉ titin and MyoD ؉ titin ؉ desmin, respectively, were restricted to the dorso-medial-most extremity of the myotome layer and did not expand during the course of myotome development. Zone M3 was positive for MyoD, desmin, titin, myosin, and cardiac troponin T and was the only zone that expanded during primary myotome development. Myotome fibers in zone M3 were unit-length, spanning the full rostro-caudal axis of the myotome while fibers in zones M1 and M2 were shorter than unit length. Anti-myoD immunofluorescence, when detected in cells lacking contractile-protein-positive cytoplasm, was restricted to the DML and nascent myotome cells immediately subjacent to the DML. These results demonstrate a dynamic spatiotemporal sequence in the differentiation program of nascent myotome cells as they emerge from the DML; zones M1 and M2 reflect standing waves of sequential contractile protein activation during the maturation of nascent myotomal myoblasts, while the expanding zone M3 reflects the accumulation of mature myotome fibers expressing a full cohort contractile proteins. Developmental Dynamics 235:382-394, 2006.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.