Accumulating evidence indicates that the formation of tumor cell platelet emboli complexes in the blood stream is a very important step during metastases and that the anti-metastasis effects of heparin are partially due to a blockade of P-selectin on platelets. In this study, heparin and chemically modified heparins were tested as inhibitors of three human colon carcinoma cell lines (COLO320, LS174T, and CW-2) binding to P-selectin, adhering to CHO cells expressing a transfected human P-selectin cDNA, and adhering to surface-anchored platelets expressing P-selectin under static and flow conditions. The aim was to screen for heparin derivatives with high anti-adhesion activity but negligible anticoagulant activity. In this study, four modified heparins with high anti-adhesion activity were identified including RO-heparin, CR-heparin, 2/3ODS-heparin, and N/2/3DS-heparin. NMR analysis proved the reliability of structure of the four modified heparins. Our findings suggested that the 6-O-sulfate group of glucosamine units in heparin is critical for the inhibition of P-selectin-mediated tumor cell adhesion. Heparan sulfate-like proteoglycans on these tumor cell surfaces are implicated in adhesion of the tumor cells to P-selectin. Some chemically modified heparins with low anticoagulant activities, such as 2/3ODS-heparin, may have potential value as therapeutic agents that block P-selectin-mediated cell adhesion and prevent tumor metastasis.Hematogenous metastasis is a highly regulated and dynamic process in which the cancerous cells separate from the primary tumor, migrate across blood vessel walls into the bloodstream, and disperse throughout the body to generate new colonies. Several lines of experiments have demonstrated that platelets can facilitate hematogenous dissemination of tumor cells (1). In this process, platelets act mainly through emboli complexes formed by the interaction of tumor cells and platelets. The formation of tumor cell-platelet emboli complexes in the blood stream not only provides a protective shield that masks them from the cytotoxic activity of natural killer cells, but also favors tumor cell adhesion to vascular endothelial cells (2-4).The interaction between tumor cells and platelets may involve several kinds of adhesion molecules. Selectins are a family of intercellular adhesion molecules that mediate the initial adhesion of leukocytes to the endothelia of blood vessels during inflammation (5-9). The family includes E-, P-, and L-selectin, and all three selectins can bind to sialylated, fucosylated, or, in some cases, sulfated glycans on glycoproteins, glycolipids, or proteoglycans (10). The tetrasaccharides [Neu5Ac␣2,3Gal1,4-(Fuc␣1,3)GlcNAc] (sLe x ) 1 and [Neu5Ac␣2,3Gal1,3(Fuc␣1,4)-GlcNAc] (sLe a ) have been identified as the minimal ligands for all three types of selectins. Recently, accumulating evidence indicates that P-selectin plays a crucial role during hematogenous metastasis, and P-selectin has been shown to bind to several human cancers and human cancer-derived cell lines, s...
Foodborne diseases caused by the consumption of food contaminated with pathogenic microorganisms or their toxins have very serious economic and public health consequences. Here, we explored the effectiveness of a recently developed intervention method for inactivation of microorganisms on fresh produce, and food production surfaces. This method utilizes Engineered Water Nanostructures (EWNS) produced by electrospraying of water vapor. EWNS possess unique properties; they are 25 nm in diameter, remain airborne in indoor conditions for hours, contain Reactive Oxygen Species (ROS) and have very strong surface charge (on average 10 e/structure). Here, their efficacy in inactivating representative foodborne bacteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless steel surfaces and on organic tomatoes, was assessed. The inactivation was facilitated using two different exposure approaches in order to optimize the delivery of EWNS to bacteria: (1) EWNS were delivered on the surfaces by diffusion and (2) a "draw through" Electrostatic Precipitator Exposure System (EPES) was developed and characterized for EWNS delivery to surfaces. Using the diffusion approach and an EWNS concentration of 24,000 #/cm3, the bacterial concentrations on the surfaces were reduced, depending on the bacterium and the surface type, by values ranging between 0.7 to 1.8 logs. Using the EPES approach and for an aerosol concentration of 50,000 #/cm3 at 90 min of exposure, results show a 1.4 log reduction for E. coli on organic tomato surfaces, as compared to the control (same conditions in regards to temperature and Relative Humidity). Furthermore, for L. innocua, the dose-response relationship was demonstrated and found to be a 0.7 and 1.2 logs removal at 12,000 and 23,000 #/cm3, respectively. The results presented here indicate that this novel, chemical-free, and environmentally friendly intervention method holds potential for development and application in the food industry, as a "green" alternative to existing disinfection methods.
Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. From the Clinical Editor This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.