Much evidence indicates that extinction training does not erase memory traces but instead forms inhibitory learning that prevents the expression of original memory. Fear conditioning induces long-term potentiation and drives synaptic insertion of AMPA receptors into the amygdala. Here we show that extinction training applied 1 h after training reversed the conditioning-induced increase in surface glutamate receptor subunit 1 (GluR1) in parallel with the inhibition of startle potentiation. However, if applied 24 h after training, extinction training reduced startle potentiation without influencing the GluR1 increase. We infused D-cycloserine (DCS), a partial agonist of the glycine site on the NMDA receptor, bilaterally into the amygdala 30 min before extinction training. This augmented the extinction training-elicited reduction in startle and reversed the conditioning-induced increase in GluR1. Delivery of five sets of tetanic stimulation (TS) to the external capsule produced a robust enhancement of synaptic responses in the lateral amygdala neurons that persisted for Ͼ2 h. Low-frequency stimulation applied 1 h after TS had no long-lasting effect on synaptic responses. The same treatments, however, induced depotentiation in the presence of DCS and reversed TS-induced increase in surface GluR1. Together, this study has two important findings: (1) whether a memory trace remains intact or is erased depends on the interval between conditioning and extinction training and (2) DCS facilitates the reversal of memory trace. DCS-induced augmentation of extinction and reversal of GluR1 surface expression are likely mediated by DCS-facilitated endocytosis of AMPA receptors.
It has been recognized that the risk of cognitive decline during aging can be reduced if one maintains strong social connections, yet the neural events underlying this beneficial effect have not been rigorously studied. Here, we show that amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice demonstrate improvement in memory after they are cohoused with wild-type mice. The improvement was associated with increased protein and mRNA levels of BDNF in the hippocampus. Concomitantly, the number of BrdU ϩ /NeuN ϩ cells in the hippocampal dentate gyrus was significantly elevated after cohousing. Methylazoxymethanol acetate, a cell proliferation blocker, markedly reduced BrdU ϩ and BrdU/NeuN ϩ cells and abolished the effect of social interaction. Selective ablation of mitotic neurons using diphtheria toxin (DT) and a retrovirus vector encoding DT receptor abolished the beneficial effect of cohousing. Knockdown of BDNF by shRNA transfection blocked, whereas overexpression of BDNF mimicked the memory-improving effect. A tropomyosin-related kinase B agonist, 7,8-dihydroxyflavone, occluded the effect of social interaction. These results demonstrate that increased BDNF expression and neurogenesis in the hippocampus after cohousing underlie the reversal of memory deficit in APP/PS1 mice.
Alzheimer’s disease (AD) is characterized by progressive memory and neuronal loss culminating in cognitive impairment that not only affects a person’s living ability but also becomes a society’s as well as a family’s economic burden. AD is the most common form of dementia in older persons. It is expected that the number of people with AD dementia will increase dramatically in the next 30 years, projecting to 75 million in 2030 and 131.5 million in 2050 worldwide. So far, no sufficient evidence is available to support that any medicine is able to prevent or reverse the progression of the disease. Early studies have shown that social environment, particularly social relationships, can affect one’s behavior and mental health. A study analyzing the correlation between loneliness and risk of developing AD revealed that lonely persons had higher risk of AD compared with persons who were not lonely. On the other hand, it has been reported that we can prevent cognitive decline and delay the onset of AD if we keep mentally active and frequently participate in social activities. In this review, we focus on the impact of social behaviors on the progression of cognitive deficit in animal models of AD with a particular emphasis on a mechanistic scheme that explains how social isolation exacerbates cognitive impairment and how social interaction with conspecifics rescues AD patients’ memory deficit.
Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.