Capacitive electrocardiogram (cECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available for the implementation of multiple-channel cECG system in standard limb leads. The circuit diagram for such a system is also rarely available in literature. This paper presents a multiple-channel limb-lead cECG system that utilized conductive fabrics as the capacitive sensors. The design criteria and the corresponding circuit diagram are described in detail. The proposed system also incorporates the capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented system is verified to be stable by theoretic analysis and long-term experiments. The signals acquired by the presented system are competitive with those by commercially available electrocardiogram (ECG) machines. The feasible size and distance to the subject for the sensor made by conductive fabric have also been evaluated by a series of tests. From the test results, the sensor is suggested to be of greater than 60 cm2 in area and not more than 3 mm in distance for cECG measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.