In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Intracerebral haemorrhage (ICH) accounts for about 10–15% of all strokes. ICH is associated with high mortality and morbidity and there has been no successful Phase III clinical trial for this condition. The last six years has seen a great increase in the number of pre-clinical and clinical studies focused on ICH. There have been significant advances in the animal models available to study ICH and in our understanding of the mechanisms underlying brain injury following haemorrhage. This has led to the identification of several therapeutic targets that are now being pursued into clinical trials. These advances are described in this review in addition to information on past and current clinical trials. Many of the former were based on very limited pre-clinical data and possible guidelines on the nature of pre-clinical results that justify proceeding to the clinic are discussed.
Background and Purpose-Evidence indicates that brain injury after intracerebral hemorrhage (ICH) is due in part to the release of iron from hemoglobin. Therefore, we examined whether such iron is cleared from the brain and the effects of ICH on proteins that may alter iron release or handling: brain heme oxygenase-1, transferrin, transferrin receptor, and ferritin. Methods-Male Sprague-Dawley rats received an infusion of 100 L autologous whole blood into the right basal ganglia and were killed 1, 3, 7, 14, or 28 days later. Enhanced Perl's reaction was used for iron staining, and brain nonheme iron content was determined. Brain heme oxygenase-1, transferrin, transferrin receptor, and ferritin were examined by Western blot analysis and immunohistochemistry. Immunofluorescent double labeling was performed to identify which cell types express ferritin. Results-ICH upregulated heme oxygenase-1 levels and resulted in iron overload in the brain. A marked increase in brain nonheme iron was not cleared within 4 weeks. Brain transferrin and transferrin receptor levels were also increased. In addition, an upregulation of ICH on ferritin was of very long duration. Conclusions-The iron overload and upregulation of iron-handling proteins, including transferrin, transferrin receptor, and ferritin, in the brain after ICH suggest that iron could be a target for ICH therapy.
Background and Purpose-In humans, intracerebral hemorrhage (ICH) causes marked perihematomal edema formation and neurological deficits. A rat ICH model, involving infusion of autologous blood into the caudate, has been used extensively to study mechanisms of edema formation, but an examination of behavioral outcome would improve its preclinical utility and provide a more rigorous assessment of the pathological cascade of events over time. The purpose of this study was to use a battery of sensorimotor function tests to examine the neurological effects of ICH in the rat and to examine which components of the hematoma are involved in generating those effects. Methods-The behavioral tests used were forelimb placing, preference for forelimb use for weight shifts during vertical exploration of a cylindrical enclosure, and a corner turn test. Rats were tested from day 1 to day 28 after injection of autologous whole blood; injection of blood plus hirudin (thrombin inhibitor), packed red blood cells, thrombin, or saline; or needle placement only. Results-The battery of tests indicated that there were marked neurological deficits by day 1 after ICH, with progressive recovery of function over 4 weeks. The forelimb placing score paralleled changes in edema. Injection of thrombin caused and injection of hirudin reduced the ICH-induced neurological deficits. Injection of packed red blood cells, which causes delayed edema formation, induced delayed neurological deficits Conclusions-These tests allow continuous monitoring of neurological deficits after rat ICH and assessment of therapeutic interventions. The time course of the neurological deficit closely matched the time course of cerebral edema for both ICH and injection of blood components. There was marked recovery of function after ICH, which may be amenable to therapeutic manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.