A strategy to prepare interconnected carbon nanofibers using an electrospinning technique is proposed. This strategy lies in the addition of poly(acrylonitrile-co-butadiene (PAN-co-PB) copolymer in a precursor solution composed of polyacrylonitrile (PAN) and N,N-dimethylformamide. During pyrolysis, PB decomposed, softening the fibers and creating the possibility of fiber–fiber connection. The fiber diameter decreased with an increase in the PAN-co-PB content. Further addition of PAN-co-PB caused the fusion of neighboring fibers, which enlarged the fiber diameter and decreased the specific surface area of fibers. The microcrystallite sizes of carbon nanofibers depended on the PAN-co-PB content; and the addition of PAN-co-PB promoted the development of ordered graphite crystallites. The interconnected carbon nanofibers exhibited an electrical conductivity four times larger than that of the nanofibers with a uniform separated fibrous structure. The purpose of this work is to prepare carbon nanofiber mats with good electrical conductivity and well-controlled morphology for further use as energy-associated devices and catalyst supports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.